Research Article

ST-AGRNN: A Spatio-Temporal Attention-Gated Recurrent Neural Network for Traffic State Forecasting

Table 2

Traffic flow prediction performance under different benchmark methods in the PeMSD4 and PeMSD8 datasets (bold is the best; underline is the second best.).

ModelPeMSD4
MAERMSEMAPE (%)
HA38.0359.2427.88
ARIMA(2003)33.7348.8024.18
STGCN(2018)21.1634.8913.83
DCRNN(2018)21.2233.4414.17
ASTGCN(r)(2019)22.9335.2216.56
GWN(2019)24.8939.6617.29
LSGCN(2020)21.5333.8613.18
STSGCN(2020)21.1933.6513.90
STFGNN(2021)20.4832.5116.77
Z-GCNETs(2021)19.5031.6112.78
STG-NCDE(2022)19.2131.0912.76
ST-AGRNN(ours)18.9730.00312.81

ModelPeMSD8
MAERMSEMAPE (%)
HA34.8659.2427.88
ARIMA(2003)31.0944.3222.73
STGCN(2018)17.5027.0911.29
DCRNN(2018)16.8226.3610.92
ASTGCN(r) (2019)18.2528.0611.64
GWN(2019)18.2830.0512.15
LSGCN(2020)17.7326.7611.20
STSGCN(2020)17.1326.8010.96
STFGNN(2021)16.9426.2510.60
Z-GCNETs(2021)15.7525.1110.01
STG-NCDE(2022)15.4524.819.92
ST-AGRNN(ours)14.9523.159.21