Research Article
ST-AGRNN: A Spatio-Temporal Attention-Gated Recurrent Neural Network for Traffic State Forecasting
Table 3
Comparison of traffic speed prediction results of the ST-AGRRG and ST-DWGRU models (bold is the best).
| T | Metric | PeMSD4 | PeMSD8 | ST-AGRNN | ST-DWGRU | ST-AGRNN | ST-DWGRU |
| 15 min | MAE | 1.19 | 1.20 | 1.015 | 1.005 | RMSE | 2.36 | 2.40 | 2.07 | 2.08 | MAPE | 2.17 | 2.21 | 1.82 | 1.81 |
| 30 min | MAE | 1.45 | 1.48 | 1.24 | 1.25 | RMSE | 2.98 | 3.12 | 2.63 | 2.70 | MAPE | 2.69 | 2.75 | 2.21 | 2.24 |
| 60 min | MAE | 1.76 | 1.90 | 1.53 | 1.57 | RMSE | 3.63 | 4.01 | 3.33 | 3.49 | MAPE | 3.24 | 3.53 | 2.71 | 2.78 |
|
|