Research Article
Spatiotemporal DeepWalk Gated Recurrent Neural Network: A Deep Learning Framework for Traffic Learning and Forecasting
Table 2
Performance comparison of ST-DWGRU and other approaches on the datasets PeMSD4, PeMSD8, and PeMS-BAY.
| Model | PeMSD4 (15/30/60 min) | MAE | RMSE | MAPE (%) |
| HA | 2.54 | 4.96 | 5.56 | ARIMA (2003) | 2.51/2.75/3.21 | 5.72/6.34/7.36 | 5.32/5.69/6.56 | DCRNN (2018) | 1.35/1.77/2.26 | 2.94/4.06/5.28 | 2.68/3.71/5.10 | STGCN (2018) | 1.47/1.93/2.55 | 3.01/4.21/5.65 | 2.92/3.98/5.39 | ASTGCN (2019) | 2.12/2.42/2.73 | 3.96/4.59/5.21 | 4.16/4.80/5.46 | GWN (2019) | 1.30/1.70/2.03 | 2.68/3.82/4.65 | 2.67/3.73/4.60 | LSGCN (2020) | 1.45/1.82/2.22 | 2.93/3.92/4.83 | 2.90/3.84/4.85 | USTGCN (2021) | 1.40/1.64/2.03 | 2.69/3.19/4.25 | 2.81/3.23/4.32 | ST-DWGRU (ours) | 1.20/1.48/1.90 | 2.40/3.12/4.01 | 2.21/2.75/3.53 |
| Model | PeMSD8 (15/30/60 min) | MAE | RMSE | MAPE (%) | HA | 1.98 | 4.11 | 3.94 | ARIMA (2003) | 1.90/2.12/2.79 | 4.87/5.24/6.22 | 5.11/5.21/5.62 | DCRNN (2018) | 1.17/1.49/1.87 | 2.59/3.56/4.50 | 2.32/3.21/4.28 | STGCN (2018) | 1.19/1.59/2.25 | 2.62/3.61/4.68 | 2.34/3.24/4.54 | ASTGCN (2019) | 1.49/1.67/1.89 | 3.18/3.69/4.13 | 3.16/3.59/4.22 | LSGCN (2020) | 1.16/1.46/1.81 | 2.45/3.28/4.11 | 2.24/3.02/3.89 | USTGCN (2021) | 1.14/1.25/1.70 | 2.15/2.58/3.27 | 2.07/2.35/3.22 | ST-DWGRU (ours) | 1.005/1.25/1.57 | 2.08/2.70/3.49 | 1.81/2.24/2.78 |
| Model | PeMS-BAY (15/30/60 min) | MAE | RMSE | MAPE (%) | HA | 2.88 | 5.59 | 6.84 | ARIMA (2003) | 1.62/2.33/3.38 | 3.30/4.76/6.50 | 3.5/5.4/8.3 | DCRNN (2018) | 1.38/1.74/2.07 | 2.95/3.97/4.74 | 2.9/3.9/4.9 | STGCN (2018) | 1.46/2.00/2.67 | 3.01/4.31/5.73 | 2.9/4.1/5.4 | GWN (2019) | 1.30/2.63/1.95 | 2.74/3.70/4.52 | 2.7/3.7/4.6 | ST-DWGRU (ours) | 1.33/1.68/2.08 | 2.52/3.28/4.17 | 2.59/3.32/4.14 |
|
|
Bold is the best; underline is the second best.
|