Research Article

Spatiotemporal DeepWalk Gated Recurrent Neural Network: A Deep Learning Framework for Traffic Learning and Forecasting

Table 2

Performance comparison of ST-DWGRU and other approaches on the datasets PeMSD4, PeMSD8, and PeMS-BAY.

ModelPeMSD4 (15/30/60 min)
MAERMSEMAPE (%)

HA2.544.965.56
ARIMA (2003)2.51/2.75/3.215.72/6.34/7.365.32/5.69/6.56
DCRNN (2018)1.35/1.77/2.262.94/4.06/5.282.68/3.71/5.10
STGCN (2018)1.47/1.93/2.553.01/4.21/5.652.92/3.98/5.39
ASTGCN (2019)2.12/2.42/2.733.96/4.59/5.214.16/4.80/5.46
GWN (2019)1.30/1.70/2.032.68/3.82/4.652.67/3.73/4.60
LSGCN (2020)1.45/1.82/2.222.93/3.92/4.832.90/3.84/4.85
USTGCN (2021)1.40/1.64/2.032.69/3.19/4.252.81/3.23/4.32
ST-DWGRU (ours)1.20/1.48/1.902.40/3.12/4.012.21/2.75/3.53

ModelPeMSD8 (15/30/60 min)
MAERMSEMAPE (%)
HA1.984.113.94
ARIMA (2003)1.90/2.12/2.794.87/5.24/6.225.11/5.21/5.62
DCRNN (2018)1.17/1.49/1.872.59/3.56/4.502.32/3.21/4.28
STGCN (2018)1.19/1.59/2.252.62/3.61/4.682.34/3.24/4.54
ASTGCN (2019)1.49/1.67/1.893.18/3.69/4.133.16/3.59/4.22
LSGCN (2020)1.16/1.46/1.812.45/3.28/4.112.24/3.02/3.89
USTGCN (2021)1.14/1.25/1.702.15/2.58/3.272.07/2.35/3.22
ST-DWGRU (ours)1.005/1.25/1.572.08/2.70/3.491.81/2.24/2.78

ModelPeMS-BAY (15/30/60 min)
MAERMSEMAPE (%)
HA2.885.596.84
ARIMA (2003)1.62/2.33/3.383.30/4.76/6.503.5/5.4/8.3
DCRNN (2018)1.38/1.74/2.072.95/3.97/4.742.9/3.9/4.9
STGCN (2018)1.46/2.00/2.673.01/4.31/5.732.9/4.1/5.4
GWN (2019)1.30/2.63/1.952.74/3.70/4.522.7/3.7/4.6
ST-DWGRU (ours)1.33/1.68/2.082.52/3.28/4.172.59/3.32/4.14

Bold is the best; underline is the second best.