Research Article

Research on the Optimization of Cross-Border Logistics Paths of the “Belt and Road” in the Inland Regions

Algorithm 1

NSGA-II algorithm.
Input: Number of individuals in the population, NUM; Maximum evolutionary generation, G;
Output: The population that completes the optimization is the pareto optimal solution;
(1)/∗ Initial population ∗/
(2)while = 0.  ≤ G do
(3)population: = population + offspring;/∗ Father and son merged ∗/
(4)levels: = ndSort (population, NUM);/∗ Non-dominant ranking ∗/
(5)distance: = crowdis (population, levels);/∗ Calculate the crowded distance ∗/
(6)population, FitnV: = argsort (lexsort ([dis-levels]));/∗Calculate fitness ∗/
(7)until number of population < NUM
(8)return population
(9)/∗ Start to evolve ∗/
(10)offspring: = population|selecting (population, FitnV, NUM)|;/∗Select individuals to participate in evolution ∗/
(11)offspring: = recOper (offspring);/∗ Simulated binary crossover ∗/
(12)offspring: = mutOper (offspring);/∗ Polynomial mutation ∗/
(13)population: = reinsertion (population, offspring);/∗Reinsert to get a new generation of population ∗/
(14): =  + 1
(15)end do
(16)return population