Research Article
Stacking-Based Ensemble Learning Method for the Recognition of the Pedestrian Crossing Intention
Table 4
Model evaluation result at 0.5 s before crossing the zebra crossing.
| Algorithm | Accuracy (%) | WSI | WWI | SWI | Pr (%) | Re (%) | F1 (%) | Pr (%) | Re (%) | F1 (%) | Pr (%) | Re (%) | F1 (%) |
| SVM | 85.26 | 84.76 | 84.24 | 84.50 | 88.75 | 87.12 | 87.93 | 82.35 | 84.34 | 83.33 | RF | 87.07 | 86.59 | 86.59 | 86.59 | 90.63 | 88.41 | 89.51 | 84.12 | 86.14 | 85.12 | LSTM | 89.30 | 90.24 | 88.62 | 89.43 | 91.88 | 90.74 | 91.30 | 87.06 | 88.62 | 87.83 | AT-Bi-LSTM | 92.12 | 92.07 | 91.52 | 91.79 | 93.75 | 93.17 | 93.46 | 90.59 | 91.67 | 91.12 | Stacking | 95.36 | 95.12 | 94.55 | 94.83 | 96.88 | 96.27 | 96.57 | 94.12 | 95.24 | 94.67 |
|
|
Note. Pr represents precision, Re represents recall, and F1 represents F1 scores.
|