Research Article

Deep Learning-Enabled Automatic Detection of Bridges for Promoting Transportation Surveillance under Different Imaging Conditions

Table 1

The mean average precision (mAP) results of four bridge detection models trained with original dataset and enlarged dataset by data augmentation strategy.

DatasetMethodsClearHazyLow-lightFPS

OriginalFaster R-CNN [9]55.25 ± 1.1746.30 ± 1.1551.11 ± 1.229
YOLOv3 [10]50.02 ± 0.5142.24 ± 0.5447.60 ± 0.4777
YOLOv4 [11]60.05 ± 0.3951.34 ± 0.4257.70 ± 0.3767
YOLOv5 [12]60.38 ± 0.3549.50 ± 0.5255.55 ± 0.44140

Data augmentationFaster R-CNN [9]57.24 ± 0.3359.45 ± 0.2165.09 ± 0.418
YOLOv3 [10]55.76 ± 0.3557.34 ± 0.2363.44 ± 0.2876
YOLOv4 [11]69.38 ± 0.0968.06 ± 0.1170.03 ± 0.0765
YOLOv5 [12]60.49 ± 0.1462.79 ± 0.1776.47 ± 0.16142