Journal of Advanced Transportation / 2022 / Article / Tab 5 / Research Article
Identification of Working Trucks and Critical Path Nodes for Construction Waste Transportation Based on Electric Waybills: A Case Study of Shenzhen, China Table 5 Results of parameter tuning with variations in max_depth and min_child_weight .
Number Parameters Mean_validation_score Cv_validation_scores 0 {′max_depth′ :3, ′min_child_weight′ : 1} 0.90196681 [0.90126997 0.90266393] 1 {′max_depth′ : 3, ′min_child_weight′ : 2} 0.901761934 [0.90147481 0.90204918] 2 {′max_depth′ : 3, ′min_child_weight′ : 3} 0.90196681 [0.90106514 0.90286885] 3 {′max_depth′ : 4, ′min_child_weight′ : 1} 0.904118009 [0.90434248 0.90389344] 4 {′max_depth′ : 4, ′min_child_weight′ : 2} 0.903605818 [0.90311348 0.90409836] 5 {′max_depth′ : 4, ′min_child_weight′ : 3} 0.902581438 [0.90208931 0.90307377] 6 {′max_depth′ : 5, ′min_child_weight′ : 1} 0.903708257 [0.90434248 0.90307377] 7 {′max_depth′ : 5, ′min_child_weight′ : 2} 0.903196066 [0.90372798 0.90266393] 8 {′max_depth′ : 5, ′min_child_weight′ : 3} 0.902376562 [0.90229414 0.90245902] 9 {′max_depth′ : 6, ′min_child_weight′ : 1} 0.90299119 [0.90331831 0.90266393] 10 {′max_depth′ : 6, ′min_child_weight′ : 2} 0.902888752 [0.90290864 0.90286885] 11 {′max_depth′ : 6, ′min_child_weight′ : 3} 0.903093628 [0.90270381 0.90348361]