Research Article

Identification of Working Trucks and Critical Path Nodes for Construction Waste Transportation Based on Electric Waybills: A Case Study of Shenzhen, China

Table 5

Results of parameter tuning with variations in max_depth and min_child_weight.

NumberParametersMean_validation_scoreCv_validation_scores

0{′max_depth′:3, ′min_child_weight′: 1}0.90196681[0.90126997 0.90266393]
1{′max_depth′: 3, ′min_child_weight′: 2}0.901761934[0.90147481 0.90204918]
2{′max_depth′: 3, ′min_child_weight′: 3}0.90196681[0.90106514 0.90286885]
3{′max_depth′: 4, ′min_child_weight′: 1}0.904118009[0.90434248 0.90389344]
4{′max_depth′: 4, ′min_child_weight′: 2}0.903605818[0.90311348 0.90409836]
5{′max_depth′: 4, ′min_child_weight′: 3}0.902581438[0.90208931 0.90307377]
6{′max_depth′: 5, ′min_child_weight′: 1}0.903708257[0.90434248 0.90307377]
7{′max_depth′: 5, ′min_child_weight′: 2}0.903196066[0.90372798 0.90266393]
8{′max_depth′: 5, ′min_child_weight′: 3}0.902376562[0.90229414 0.90245902]
9{′max_depth′: 6, ′min_child_weight′: 1}0.90299119[0.90331831 0.90266393]
10{′max_depth′: 6, ′min_child_weight′: 2}0.902888752[0.90290864 0.90286885]
11{′max_depth′: 6, ′min_child_weight′: 3}0.903093628[0.90270381 0.90348361]