Research Article

Identification of Working Trucks and Critical Path Nodes for Construction Waste Transportation Based on Electric Waybills: A Case Study of Shenzhen, China

Table 7

Results of parameter tuning with variations in subsample and colsample_bytree.

NumberParametersMean_validation_scoreCv_validation_scores

0{′colsample_bytree′: 0.7, ′subsample′: 0.7}0.904322885[0.90311348 0.90553279]
1{′colsample_bytree′: 0.7, ′subsample′: 0.8}0.903913133[0.90249898 0.90532787]
2{′colsample_bytree′: 0.7, ′subsample′: 0.9}0.904322885[0.90393281 0.90471311]
3{′colsample_bytree′: 0.7, ′subsample′: 1}0.903913133[0.90352315 0.90430328]
4{′colsample_bytree′: 0.8, ′subsample′: 0.7}0.904322885[0.90311348 0.90553279]
5{′colsample_bytree′: 0.8, ′subsample′: 0.8}0.903913133[0.90249898 0.90532787]
6{′colsample_bytree′: 0.8, ′subsample′: 0.9}0.904322885[0.90393281 0.90471311]
7{′colsample_bytree′: 0.8, ′subsample′: 1}0.903913133[0.90352315 0.90430328]
8{′colsample_bytree′: 0.9, ′subsample′: 0.7}0.903810695[0.90290864 0.90471311]
9{′colsample_bytree′: 0.9, ′subsample′: 0.8}0.903913133[0.90372798 0.90409836]
10{′colsample_bytree′: 0.9, ′subsample′: 0.9}0.904732637[0.90393281 0.90553279]
11{′colsample_bytree′: 0.9, ′subsample′: 1}0.90299119[0.90311348 0.90286885]
12{′colsample_bytree′: 1, ′subsample′: 0.7}0.903810695[0.90290864 0.90471311]
13{′colsample_bytree′: 1, ′subsample′: 0.8}0.904118009[0.90434248 0.90389344]
14{′colsample_bytree′: 1, ′subsample′: 0.9}0.904732637[0.90413765 0.90532787]
15{′colsample_bytree′: 1, ′subsample′: 1}0.903298504[0.90393281 0.90266393]