Research Article
Adaptive Numerical Method for Approximation of Traffic Flow Equations
Table 1
A comparison of the solution of equation of example 1 using the present method with other numerical methods.
| t | x | Without MLS | Mathematica | New method |
| 5 | −20 | 0.2624 | 0.2640 | 0.2631 | −10 | 0.6136 | 0.5600 | 0.5613 | 0 | 0.8872 | 0.9089 | 0.9184 | 10 | 0.4653 | 0.4695 | 0.4726 | 20 | 0.2618 | 0.2624 | 0.2626 |
| 10 | −20 | 0.2628 | …… | 0.2633 | −10 | 0.7288 | …… | 0.6537 | 0 | 0.8877 | …… | 0.8535 | 10 | 0.4334 | …… | 0.4476 | 20 | 0.2616 | …… | 0.2625 |
| 15 | −20 | 0.2632 | …… | 0.2636 | −10 | 0.8444 | …… | 0.8151 | 0 | 0.7369 | …… | 0.7877 | 10 | 0.4112 | …… | 0.4285 | 20 | 0.2615 | …… | 0.2623 |
| 20 | −20 | 0.2599 | …… | 0.2639 | −10 | 0.9019 | …… | 0.9347 | 0 | 0.7410 | …… | 0.7313 | 10 | 0.3976 | …… | 0.4134 | 20 | 0.2621 | …… | 0.2622 |
| 25 | −20 | 0.2538 | …… | 0.2646 | −10 | 0.8550 | …… | 0.9388 | 0 | 0.5769 | …… | 0.6844 | 10 | 0.3849 | …… | 0.4016 | 20 | 0.2606 | …… | 0.2620 |
|
|