Research Article
A Dynamic Spatio-Temporal Deep Learning Model for Lane-Level Traffic Prediction
Table 2
The performance of our model and other baselines on traffic flow prediction. Bold scores are the best and underlined scores are the second best.
| T | 5 min | 10 min | 15 min |
| Model | MAE | RMSE | VAR | MAE | RMSE | VAR | MAE | RMSE | VAR |
| MLP | 3.4547 | 4.3616 | 0.5305 | 3.4033 | 4.4673 | 0.4902 | 3.7487 | 4.7843 | 0.4248 | LSTM | 3.2121 | 4.1408 | 0.5687 | 3.3041 | 4.2225 | 0.5526 | 3.3171 | 4.2376 | 0.5494 | GRU | 3.1250 | 4.1229 | 0.5659 | 3.3186 | 4.2368 | 0.5527 | 3.3297 | 4.2511 | 0.5479 | GCN | 4.8086 | 5.9925 | 0.0836 | 4.8028 | 5.9863 | 0.0855 | 4.8052 | 5.9799 | 0.0876 | T-GCN | 4.4467 | 5.4664 | 0.2541 | 4.5756 | 5.6031 | 0.2186 | 4.5271 | 5.6392 | 0.1879 | Ours w/o gate | 2.8311 | 3.7730 | 0.6380 | 2.9249 | 3.8593 | 0.6221 | 3.0161 | 3.9491 | 0.6049 | Ours | 2.8274 | 3.7697 | 0.6385 | 2.9168 | 3.8522 | 0.6234 | 2.9951 | 3.9268 | 0.6093 |
|
|