Research Article
Learning Spatial-Temporal Features of Ride-Hailing Services with Fusion Convolutional Networks
Table 1
Comparison of the predictive performance.
| Model | RMSE | MAPE (%) | SMAPE (%) |
| Additive model | 1.86 | 24.78 | 29.92 | Random forest | 1.96 | 25.52 | 32.34 | ANN | 2.04 | 24.43 | 29.06 | CNN | 1.82 | 25.78 | 32.22 | LSTM | 1.82 | 26.95 | 35.76 | Conv-LSTM | 1.83 | 26.06 | 32.92 | FCL-Net | 1.77 | 25.05 | 32.48 | ST-ResNet | 1.75 | 24.81 | 31.30 | FCN | 1.78 | 27.36 | 33.85 | LC-FCN | 1.69 | 22.98 | 27.70 | LC-LSTM-FCN | 1.78 | 23.00 | 28.36 | LC-ST-FCN | 1.67 | 22.40 | 27.69 |
|
|
The bold values represent the best results given by the metrics (i.e., RMSE, MAPE, and SMAPE).
|