Research Article

Prediction of Ship Traffic Flow and Congestion Based on Extreme Learning Machine with Whale Optimization Algorithm and Fuzzy c-Means Clustering

Table 2

Comparison of prediction of ship traffic flow between proposed and comparison methods.

Time slice15 min30 min1 h
MethodMAERMSEMAPE (%)MAERMSEMAPE (%)MAERMSEMAPE (%)

WOA-ELM6.988 09.111 06.994 08.974 810.931 47.103 511.83314.735 58.044 8
EMD-WOA-ELM4.560 85.898 24.558 35.509 06.632 24.324 96.634 18.239 74.481 5
VMD-WOA-ELM2.099 42.640 42.114 03.393 24.236 52.810 93.143 54.112 02.135 6
ELM7.570 29.840 57.523 89.842 711.695 28.091 512.751 915.3518.555 6
BP7.420 59.869 57.402 19.288 611.922 27.733 512.454 115.9098.493 3