Research Article
Prediction of Ship Traffic Flow and Congestion Based on Extreme Learning Machine with Whale Optimization Algorithm and Fuzzy c-Means Clustering
Table 3
Comparison of prediction of ship traffic density between proposed and comparison methods.
| Time slice | 15 min | 30 min | 1 h | Method | MAE | RMSE | MAPE (%) | MAE | RMSE | MAPE (%) | MAE | RMSE | MAPE (%) |
| WOA-ELM | 3.427 1 | 0.563 6 | 7.0071 | 0.529 8 | 0.656 7 | 7.156 7 | 0.617 9 | 0.786 8 | 7.444 3 | EMD-WOA-ELM | 0.263 1 | 0.343 9 | 4.446 0 | 0.342 1 | 0.408 7 | 4.468 6 | 0.400 6 | 0.473 1 | 4.518 8 | VMD-WOA-ELM | 0.126 5 | 0.158 9 | 2.132 2 | 0.196 2 | 0.248 4 | 2.744 1 | 0.174 5 | 0.234 0 | 2.002 3 | ELM | 0.447 3 | 0.585 4 | 7.460 1 | 0.532 7 | 0.677 1 | 7.321 7 | 0.705 9 | 0.9109 | 8.054 8 | BP | 0.4346 | 0.586 6 | 7.308 5 | 0.557 1 | 0.683 5 | 8.071 8 | 0.687 6 | 0.832 2 | 7.861 6 |
|
|