Research Article
Multibranch Adaptive Fusion Graph Convolutional Network for Traffic Flow Prediction
Table 1
Compares the performance of MBAF with other baseline models at 15 min, 30 min, and 60 min.
| Data | Models | 15 min | 30 min | 60 min | MAE | RMSE | MAPE (%) | MAE | RMSE | MAPE (%) | MAE | RMSE | MAPE (%) |
| METR-LA | HA | 4.16 | 7.80 | 13.0 | 4.16 | 7.80 | 13.0 | 4.16 | 7.80 | 13.0 | ARIMA | 3.99 | 8.21 | 9.60 | 5.15 | 10.45 | 12.70 | 6.90 | 13.23 | 17.40 | SVR | 3.54 | 7.84 | 8.94 | 4.44 | 9.82 | 11.64 | 5.65 | 12.07 | 15.92 | FC-LSTM | 3.44 | 6.30 | 9.60 | 3.77 | 7.23 | 10.90 | 4.37 | 8.69 | 13.20 | WaveNet | 2.99 | 5.89 | 8.04 | 3.59 | 7.28 | 10.25 | 4.45 | 8.93 | 13.62 | DCRNN | 2.77 | 5.38 | 7.30 | 3.15 | 6.45 | 8.80 | 3.60 | 7.60 | 10.50 | GGRU | 2.71 | 5.24 | 6.99 | 3.12 | 6.36 | 8.56 | 3.64 | 7.65 | 10.62 | STGCN | 2.88 | 5.74 | 7.62 | 3.47 | 7.24 | 9.57 | 4.59 | 9.40 | 12.70 | Graph WaveNet | 2.69 | 5.15 | 6.90 | 3.07 | 6.22 | 8.37 | 3.53 | 7.37 | 10.01 | MBAF-GCN | 2.69 | 5.13 | 6.86 | 3.02 | 6.06 | 8.14 | 3.45 | 7.13 | 9.98 |
| PEMS-BAY | HA | 2.88 | 5.59 | 6.80 | 2.88 | 5.59 | 6.80 | 2.88 | 5.59 | 6.80 | ARIMA | 1.62 | 3.30 | 3.50 | 2.33 | 4.76 | 5.40 | 3.38 | 6.50 | 8.30 | SVR | 1.53 | 3.38 | 3.49 | 2.01 | 4.63 | 4.78 | 2.64 | 6.03 | 6.72 | FC-LSTM | 2.05 | 4.19 | 4.80 | 2.20 | 4.55 | 5.20 | 2.37 | 4.96 | 5.70 | WaveNet | 1.39 | 3.01 | 2.91 | 1.83 | 4.21 | 4.16 | 2.35 | 5.43 | 5.87 | DCRNN | 1.38 | 2.95 | 2.90 | 1.74 | 3.97 | 3.90 | 2.07 | 4.74 | 4.90 | GGRU | — | — | — | — | — | — | — | — | — | STGCN | 1.36 | 2.96 | 2.90 | 1.81 | 4.27 | 4.17 | 2.49 | 5.69 | 5.79 | Graph WaveNet | 1.30 | 2.74 | 2.73 | 1.63 | 3.70 | 3.67 | 1.95 | 4.52 | 4.63 | MBAF-GCN | 1.30 | 2.75 | 2.77 | 1.49 | 3.55 | 3.39 | 1.87 | 4.38 | 4.41 |
|
|
The MBAF-GCN model is superior to the comparison model.
|