Research Article

Multibranch Adaptive Fusion Graph Convolutional Network for Traffic Flow Prediction

Table 1

Compares the performance of MBAF with other baseline models at 15 min, 30 min, and 60 min.

DataModels15 min30 min60 min
MAERMSEMAPE (%)MAERMSEMAPE (%)MAERMSEMAPE (%)

METR-LAHA4.167.8013.04.167.8013.04.167.8013.0
ARIMA3.998.219.605.1510.4512.706.9013.2317.40
SVR3.547.848.944.449.8211.645.6512.0715.92
FC-LSTM3.446.309.603.777.2310.904.378.6913.20
WaveNet2.995.898.043.597.2810.254.458.9313.62
DCRNN2.775.387.303.156.458.803.607.6010.50
GGRU2.715.246.993.126.368.563.647.6510.62
STGCN2.885.747.623.477.249.574.599.4012.70
Graph WaveNet2.695.156.903.076.228.373.537.3710.01
MBAF-GCN2.695.136.863.026.068.143.457.139.98

PEMS-BAYHA2.885.596.802.885.596.802.885.596.80
ARIMA1.623.303.502.334.765.403.386.508.30
SVR1.533.383.492.014.634.782.646.036.72
FC-LSTM2.054.194.802.204.555.202.374.965.70
WaveNet1.393.012.911.834.214.162.355.435.87
DCRNN1.382.952.901.743.973.902.074.744.90
GGRU
STGCN1.362.962.901.814.274.172.495.695.79
Graph WaveNet1.302.742.731.633.703.671.954.524.63
MBAF-GCN1.302.752.771.493.553.391.874.384.41

The MBAF-GCN model is superior to the comparison model.