Research Article
STGNN-FAM: A Traffic Flow Prediction Model for Spatiotemporal Graph Networks Based on Fusion of Attention Mechanisms
Table 1
STGNN-FAM model prediction algorithm.
| Input: historical traffic flow speed data , historical time step P, forecast time step Q | Output: Predicted traffic flow speed data | (1) Use the Speed2Vec mechanism to process the historical traffic flow speed data into a form that can be sent to the GAT network for calculation | (2) function GAT() | (3) for i = 1, …, N − 1, N do | (4) | (5) | (6) end for | (7) | (8) return | (9) end function | (10) Reshape feature output by GAT network back to | (11) for j = P − 1, …, 1, 0 do | (12) If j = P − 1 | (13) | (14) | (15) end for | (16) | (17) function Attention (H) | (18) | (19) | (20) return z | (21) end function | (22) | (23) return |
|
|