Research Article

STGNN-FAM: A Traffic Flow Prediction Model for Spatiotemporal Graph Networks Based on Fusion of Attention Mechanisms

Table 3

Comparison of prediction performance of different models on PeMSD7 dataset.

Model15 min30 min45 min
MAERMSEMAPEMAERMSEMAPEMAERMSEMAPE

HA4.017.2010.614.017.2010.614.017.2010.61
ARIMA5.559.0012.925.869.1313.946.279.3815.20
LSVR2.504.555.813.636.678.884.548.2811.50
FNN2.744.756.384.026.989.725.048.5812.38
FC-LSTM3.576.208.603.947.039.554.167.5110.10
DCRNN2.374.215.543.315.968.064.017.139.99
STGCN2.254.045.263.035.707.333.576.778.69
ST-GAT2.013.454.762.764.686.573.205.307.86
STGNN-FAM1.983.504.842.554.516.262.905.177.10

The bold values in Table 3 represent the best performance.