Research Article
STGNN-FAM: A Traffic Flow Prediction Model for Spatiotemporal Graph Networks Based on Fusion of Attention Mechanisms
Table 3
Comparison of prediction performance of different models on PeMSD7 dataset.
| Model | 15 min | 30 min | 45 min | MAE | RMSE | MAPE | MAE | RMSE | MAPE | MAE | RMSE | MAPE |
| HA | 4.01 | 7.20 | 10.61 | 4.01 | 7.20 | 10.61 | 4.01 | 7.20 | 10.61 | ARIMA | 5.55 | 9.00 | 12.92 | 5.86 | 9.13 | 13.94 | 6.27 | 9.38 | 15.20 | LSVR | 2.50 | 4.55 | 5.81 | 3.63 | 6.67 | 8.88 | 4.54 | 8.28 | 11.50 | FNN | 2.74 | 4.75 | 6.38 | 4.02 | 6.98 | 9.72 | 5.04 | 8.58 | 12.38 | FC-LSTM | 3.57 | 6.20 | 8.60 | 3.94 | 7.03 | 9.55 | 4.16 | 7.51 | 10.10 | DCRNN | 2.37 | 4.21 | 5.54 | 3.31 | 5.96 | 8.06 | 4.01 | 7.13 | 9.99 | STGCN | 2.25 | 4.04 | 5.26 | 3.03 | 5.70 | 7.33 | 3.57 | 6.77 | 8.69 | ST-GAT | 2.01 | 3.45 | 4.76 | 2.76 | 4.68 | 6.57 | 3.20 | 5.30 | 7.86 | STGNN-FAM | 1.98 | 3.50 | 4.84 | 2.55 | 4.51 | 6.26 | 2.90 | 5.17 | 7.10 |
|
|
The bold values in Table 3 represent the best performance. |