Research Article

Air Traffic Flow Prediction with Spatiotemporal Knowledge Distillation Network

Table 1

The experimental results of the proposed ST-KDN and other six comparison methods in the next 10 minutes, 20 minutes, 30 minutes, 40 minutes, 50 minutes, and 60 minutes.

MetricMethod10 min20 min30 min40 min50 min60 min

MAESVR1.8986962.2446072.4842532.7671433.0521333.309817
AGCRN1.7947901.8699491.9409452.0074882.0730162.138081
ASTGCN1.7951601.8904131.9623622.0569362.0604392.158814
GMAN1.8057741.7985461.8012621.8191691.8481411.886582
STSSL1.6389031.8049661.9805732.1286362.2880992.457236
TESTAM1.8414221.8578931.8834901.9245751.9779911.989194
ST-KDN1.7634531.7701821.7717671.7782871.7790591.781851

RMSESVR2.5650812.9835503.2655323.6040073.9522994.265697
AGCRN2.5196962.6341442.7354152.8326052.9275713.023671
ASTGCN2.4959142.6302182.7377512.8668132.8893803.003969
GMAN2.5181192.5092312.5139372.5399272.5841602.645740
STSSL2.3757452.6455542.9162423.1496163.4239933.716680
TESTAM2.5632122.5954532.6385122.7124002.8077962.912532
ST-KDN2.5007122.5099242.5065042.5125592.5116322.514018

MAPESVR0.3874290.4594900.5130010.5765680.6402300.697416
AGCRN0.3688770.3853250.4048440.4231510.4415270.460654
ASTGCN0.3704270.3853250.4048440.4231510.4415270.460654
GMAN0.3846720.3790040.3765880.3778630.3822850.389442
STSSL0.3181660.3334310.3778610.3819220.3997580.408216
TESTAM0.3791140.3809910.3884000.3913310.3972760.401991
ST-KDN0.3725820.3738060.3743260.3765720.3754810.376291

The optimal results for each index within each prediction interval are indicated by bold values. Table shows prediction performance of seven different methods on the real data set in the next 10 minutes (Q = 1), 20 minutes (Q = 2), 30 minutes (Q = 3), 40 minutes (Q = 4), 50 minutes (Q = 5), and 60 minutes (Q = 6).