Research Article
An Explainable Stacked Ensemble Model for Static Route-Free Estimation of Time of Arrival
Table 3
Comparison of our ETA models of the first and second level based on different evaluation metrics.
| ā | Data set | New York city | Washington DC | Evaluation metric | MAE (seconds) | MRE | MAPE | MAE (seconds) | MRE | MAPE |
| Level 1 | L1-RF | 180.694 | 0.2158 | 27.8689 | 179.5912 | 0.2373 | 30.1512 | L1-XGBoost | 183.4192 | 0.219 | 27.1137 | 190.2613 | 0.2514 | 30.4033 | L1-FCNN | 178.2321 | 0.2129 | 23.7561 | 169.8152 | 0.2244 | 24.372 |
| Level 2 | L2-MLR | 172.2439 | 0.2057 | 25.2758 | 171.178 | 0.2262 | 27.1985 | L2-RF | 183.2319 | 0.2188 | 26.9828 | 183.7377 | 0.2428 | 29.5762 | L2-XGBoost | 173.6526 | 0.2074 | 25.3077 | 172.7287 | 0.2283 | 27.5419 | L2-FCNN | 169.4285 | 0.2023 | 22.9121 | 167.9959 | 0.222 | 24.6133 |
| Baselines | [12] | 185.9265 | 0.2256 | 23.8429 | 181.1275 | 0.2374 | 27.4261 | [1] | 201.5998 | 0.2455 | 28.1508 | 203.8581 | 0.2673 | 35.4898 | [13] | 185.3999 | 0.2257 | 28.3598 | 174.3907 | 0.2286 | 25.7570 |
|
|
This prediction precision is better than the one presented by Schleibaum et al. [ 4]. |