Research Article
Predicting Irrigation Water Quality Indices Based on Data-Driven Algorithms: Case Study in Semiarid Environment
Table 1
The descriptive statistics for irrigation water quality and input parameters.
| | EC | pH | TDS | | | | | | SAR | SSP | KR | PI | MH | %Na |
| Max | 6.11 | 8.00 | 4,350 | 17.30 | 2.71 | 6.20 | 21.67 | 10.84 | 8.54 | 71.75 | 2.54 | 82.27 | 71.62 | 72.41 | Mean | 2.38 | 6.00 | 1,531 | 3.91 | 0.93 | 4.07 | 4.61 | 4.61 | 1.92 | 29.67 | 0.48 | 46.18 | 47.59 | 34.69 | Min | 1.19 | 0.99 | 690 | 1.22 | 0.10 | 0.60 | 1.16 | 2.30 | 0.65 | 10.49 | 0.12 | 16.71 | 15.79 | 11.00 | SD | 0.94 | 0.59 | 674 | 2.51 | 0.62 | 1.21 | 3.08 | 1.49 | 1.36 | 11.54 | 0.38 | 12.44 | 12.55 | 11.06 | Skewness | 1.88 | −0.09 | 2.33 | 3.53 | 0.89 | −0.38 | 3.10 | 1.33 | 3.49 | 1.41 | 3.36 | 0.48 | −0.04 | 1.12 | Kurtosis | 3.83 | −1.09 | 5.99 | 14.42 | 0.67 | −0.31 | 13.18 | 2.83 | 13.49 | 2.63 | 12.98 | 0.32 | −0.69 | 1.74 |
|
|
EC (dS/m), TDS (ppm), K, HCO3, Mg and Ca (meq/l), Max – maximum, Min – minimum, and SD – standard deviation.
|