Research Article
Predicting Irrigation Water Quality Indices Based on Data-Driven Algorithms: Case Study in Semiarid Environment
Table 3
Premonsoon input-output correlation matrix.
| Variables | | (meq/l) | | MH | | | TDS | EC (dS/m) | | SAR | KR | SSP | %Na | PI | | | pH |
| | 1 | | | | | | | | | | | | | | | | | (meq/l) | 0.043 | 1 | | | | | | | | | | | | | | | | | 0.032 | −0.168 | 1 | | | | | | | | | | | | | | | MH | 0.050 | 0.040 | −0.239 | 1 | | | | | | | | | | | | | | | 0.058 | −0.083 | 0.465 | 0.682 | 1 | | | | | | | | | | | | | | 0.061 | −0.028 | 0.453 | 0.296 | 0.683 | 1 | | | | | | | | | | | | TDS | −0.067 | 0.206 | 0.264 | 0.023 | 0.309 | 0.334 | 1 | | | | | | | | | | | EC (dS/m) | −0.090 | 0.166 | 0.135 | 0.054 | 0.222 | 0.240 | 0.887 | 1 | | | | | | | | | | | −0.055 | 0.211 | −0.087 | 0.046 | −0.013 | 0.100 | 0.522 | 0.586 | 1 | | | | | | | | | SAR | −0.047 | 0.223 | −0.233 | −0.059 | −0.188 | −0.016 | 0.474 | 0.550 | 0.971 | 1 | | | | | | | | KR | −0.036 | 0.224 | −0.320 | −0.132 | −0.286 | −0.082 | 0.433 | 0.510 | 0.910 | 0.982 | 1 | | | | | | | SSP | −0.011 | 0.257 | −0.422 | −0.190 | −0.419 | −0.190 | 0.280 | 0.401 | 0.820 | 0.908 | 0.937 | 1 | | | | | | %Na | −0.069 | 0.295 | −0.472 | −0.228 | −0.490 | −0.233 | 0.203 | 0.295 | 0.729 | 0.837 | 0.884 | 0.948 | 1 | | | | | PI | 0.210 | 0.281 | −0.574 | −0.307 | −0.615 | −0.332 | 0.100 | 0.213 | 0.584 | 0.729 | 0.804 | 0.912 | 0.893 | 1 | | | | | −0.216 | 0.094 | 0.015 | 0.002 | −0.014 | −0.014 | −0.181 | −0.277 | −0.207 | −0.197 | −0.178 | −0.172 | 0.126 | −0.175 | 1 | | | | −0.020 | 0.060 | 0.043 | 0.051 | 0.081 | 0.083 | 0.255 | 0.235 | 0.154 | 0.139 | 0.125 | 0.110 | 0.070 | 0.048 | −0.107 | 1 | | pH | 0.002 | 0.134 | −0.227 | 0.099 | −0.022 | 0.085 | 0.166 | 0.149 | 0.153 | 0.182 | 0.202 | 0.197 | 0.167 | 0.225 | −0.125 | 0.247 | 1 |
|
|