Research Article
Predicting Irrigation Water Quality Indices Based on Data-Driven Algorithms: Case Study in Semiarid Environment
Table 5
Best subset regression analysis for irrigation water quality indices input combinations.
| Indices | Variables | MSE | R2 | Adjusted R2 | Mallows’ Cp | Akaike’s AIC | Schwarz’s SBC | Amemiya’s PC |
| SSP | Ca/Mg/Na | 32.768 | 0.781 | 0.778 | 4.609 | 666.951 | 679.939 | 0.226 | MH | EC (dS/m)/TDS/SO4/Ca/Mg | 49.492 | 0.755 | 0.748 | 6.966 | 747.248 | 766.730 | 0.258 | SAR | EC (dS/m)/TDS/SO4/Cl/Ca/Mg/Na/K | 0.041 | 0.971 | 0.970 | 8.863 | −599.143 | −569.920 | 0.031 | PI | pH/CO3(meq/l)/HCO3/SO4/Cl/Ca/Mg/Na/K | 52.228 | 0.793 | 0.782 | 9.957 | 761.294 | 793.764 | 0.228 | KR | pH/EC (dS/m)/TDS/CO3 (meq/l)/SO4/Cl/Ca/Mg/Na/K | 0.015 | 0.883 | 0.876 | 10.426 | −781.725 | −746.008 | 0.130 | %Na | pH/EC (dS/m)/CO3 (meq/l)/HCO3/SO4/Cl/Ca/Mg/Na/K | 28.660 | 0.801 | 0.790 | 10.004 | 648.215 | 683.933 | 0.221 |
|
|