Research Article

Predicting Irrigation Water Quality Indices Based on Data-Driven Algorithms: Case Study in Semiarid Environment

Table 6

Comparison between different models’ performance.

LRRSSSVMARREPTree
RMSErMSEMAERMSErMSEMAERMSErMSEMAERMSErMSEMAERMSErMSEMAE

TrainKR0.13470.9360.0181420.09160.10720.96360.011490.06550.11650.9560.0135710.071KR0.10310.96610.0106330.062131.69450.95560.014730.068
MH7.54670.845456.953475.36153.9090.961615.279952.88284.22150.954617.820212.814MH3.820.963414.592812.79284.16250.956117.326172.8226
SSP6.18670.874938.275354.46152.77880.97617.7222821.99713.01180.9729.0709362.0718SSP2.68680.97787.2193271.91962.86480.97468.2071052.0187
SAR0.21830.98530.0476180.14440.28610.9790.0818440.1450.27670.98070.0765750.1308SAR0.30040.97440.0902450.14880.40030.9610.1602460.1479
%Na5.79770.882533.614454.20763.58970.956712.885952.78853.23260.965210.449612.2881%Na3.43750.961111.816182.64193.77040.953414.215792.6201
PI7.51740.87756.510425.61924.31490.962218.618123.26784.5920.95621.085883.3637PI4.51080.957720.347723.58024.66610.955121.772123.6209

TestKR0.07540.90160.0057050.06020.08370.88880.0069880.05330.06620.93640.0043810.042KR0.07120.92230.0050830.05530.07810.90830.0061080.0559
MH4.78730.94222.91834.03033.96270.958415.702773.20964.05680.961816.457813.1999MH4.19990.958717.640383.57763.98040.956115.843093.3622
SSP3.85750.981114.880433.21272.56040.9656.5554191.92173.01680.95889.1012182.3584SSP3.68430.933513.573342.7952.63230.96796.9288082.0269
SAR0.12220.97330.0149530.09520.14110.96660.0199140.10220.11130.98190.0123830.0726SAR0.14010.97170.0196090.10520.13790.96590.0190490.0982
%Na3.22150.981110.37832.43044.0260.916816.209222.98143.70460.954713.724472.9603%Na3.47260.939512.059312.74834.01330.925216.106632.838
PI6.17740.832138.160915.23476.04380.825336.530674.67195.10660.890326.0784.0582PI6.01030.832336.125154.5895.44830.857529.684314.2895