Research Article
An Advanced Broyden–Fletcher–Goldfarb–Shanno Algorithm for Prediction and Output-Related Fault Monitoring in Case of Outliers
Table 1
FDRs of the 21 faults in the TE benchmark (%).
| Fault | PLS | BFGS | KICA | ABFGS | | | | | | | | |
| 1 | 0.00 | 0.00 | 50.75 | 88.63 | 98.75 | 98.75 | 17.88 | 99.88 | 2 | 0.00 | 0.00 | 94.00 | 92.25 | 98.63 | 98.50 | 96.75 | 98.13 | 5 | 5.50 | 5.38 | 6.25 | 6.13 | 20.50 | 21.38 | 8.25 | 100.00 | 6 | 30.25 | 28.88 | 79.00 | 79.50 | 97.25 | 98.25 | 95.63 | 100.00 | 7 | 6.75 | 6.88 | 9.00 | 9.38 | 37.88 | 25.00 | 18.13 | 100.00 | 8 | 32.50 | 32.13 | 38.75 | 40.13 | 73.63 | 87.50 | 39.38 | 98.13 | 10 | 6.88 | 6.63 | 10.75 | 10.63 | 30.88 | 9.50 | 2.25 | 84.63 | 12 | 21.38 | 20.25 | 22.38 | 22.50 | 68.38 | 61.75 | 58.00 | 99.88 | 13 | 41.38 | 41.00 | 44.00 | 43.63 | 88.63 | 81.50 | 61.25 | 95.25 | 16 | 0.25 | 0.25 | 1.13 | 1.00 | 5.38 | 1.75 | 1.25 | 89.25 | 17 | 5.00 | 5.00 | 9.50 | 10.00 | 7.38 | 0.75 | 62.75 | 96.88 | 18 | 30.75 | 28.88 | 75.00 | 75.25 | 82.38 | 86.00 | 84.25 | 89.88 | 20 | 15.13 | 14.88 | 16.75 | 18.75 | 10.38 | 5.00 | 6.75 | 89.88 | 21 | 10.63 | 10.88 | 29.38 | 27.75 | 36.75 | 18.50 | 0.38 | 43.38 | 3 | 4.13 | 4.13 | 4.00 | 4.00 | 10.63 | 2.38 | 0.13 | 0.38 | 4 | 0.00 | 0.00 | 1.50 | 1.50 | 4.25 | 0.63 | 22.00 | 100.00 | 9 | 0.50 | 0.50 | 0.38 | 0.25 | 0.63 | 0.25 | 1.38 | 2.63 | 11 | 1.25 | 1.25 | 2.25 | 2.38 | 14.25 | 0.38 | 10.88 | 71.38 | 14 | 8.13 | 8.25 | 9.75 | 10.13 | 0.88 | 2.38 | 38.63 | 100.00 | 15 | 1.63 | 1.63 | 2.13 | 2.00 | 6.13 | 0.88 | 4.50 | 2.00 | 19 | 1.00 | 1.00 | 2.38 | 2.13 | 2.25 | 1.75 | 2.25 | 90.13 | AVG | 10.62 | 10.37 | 24.24 | 26.09 | 37.89 | 33.46 | 30.13 | 78.65 | AVG-FAR | 0.63 | 0.63 | 0.54 | 0.57 | 0.95 | 1.04 | 0.86 | 0.74 |
|
|
The bold data in the table represent the highest fault detection rate.
|