Research Article

Cluster Density of Dependent Thinning Distributed Clustering Class of Algorithms in Ad Hoc Deployed Wireless Networks

Table 2

Applicability of the proposed technique equally among HEED, ANTCLUST, and EDCR algorithms.

Average number of clusters, šø [ š‘˜ ] š“
Case šø [ š‘˜ ] (AV ± SD)
Beginning Middle End Overall

H1 20 2 0 . 4 ± 0 . 5 1 9 . 3 ± 1 . 2 1 8 . 8 ± 1 . 1 1 9 . 5 ± 1 . 2
A1 20 1 9 . 6 ± 0 . 9 1 9 . 4 ± 1 . 8 1 8 . 8 ± 1 . 5 1 9 . 3 ± 1 . 4
E1 20 1 9 . 6 ± 1 . 5 2 0 . 3 ± 0 . 9 2 0 . 4 ± 0 . 8 2 0 . 1 ± 1 . 1
H2 30 2 9 . 1 ± 1 . 6 2 8 . 3 ± 0 . 8 2 9 . 9 ± 0 . 8 2 9 . 1 ± 1 . 3
A2 30 2 9 . 7 ± 1 . 4 3 0 . 1 ± 1 . 6 2 8 . 4 ± 2 . 0 2 9 . 4 ± 1 . 8
E2 30 2 9 . 3 ± 2 . 0 3 0 . 3 ± 1 . 0 3 0 . 2 ± 1 . 6 2 9 . 9 ± 1 . 6
H3 20 1 8 . 9 ± 1 . 9 2 0 . 0 ± 2 . 2 1 9 . 5 ± 1 . 1 1 9 . 5 ± 1 . 8
A3 20 1 9 . 3 ± 1 . 1 1 9 . 6 ± 0 . 9 1 8 . 3 ± 1 . 7 1 9 . 1 ± 1 . 4
E3 20 1 9 . 1 ± 0 . 7 1 9 . 7 ± 1 . 4 1 7 . 9 ± 1 . 2 1 8 . 9 ± 1 . 3