Research Article

Development and Internal Validation of Machine Learning Algorithms for Determining Sodium Valproate Concentrations below the Standard Level Using a Risk Prediction Model of Children with Epilepsy

Table 1

Forecast results for development group and validation group of machine learning algorithms.

SenSpeTPFNFPTNAccuracyPrecisionRecallF1 score

Development group (standard/low=297/124)
RF1.001.00124002971.001.001.001.00
SVM0.8060.7719628582390.7960.6230.7740.691
GLM0.7180.6367945842130.6940.4850.6370.551
GBM0.7340.81510123792180.7580.5610.8150.664
NNET1.000.24312102970.7131.0000.0240.047

Validation group (standard/low=80/24)
RF1.001.002400801.001.001.001.00
SVM0.9580.9122317730.9230.7670.9580.852
GLM0.6670.66216827530.6630.3720.6670.478
GBM0.8330.73720421590.7600.4880.8330.615
NNET0.6250.61215931490.6150.3260.6250.429

RF: random forest; SVM: support vector machine; GBM: gradient boosting machine; GLM: generalized linear model; NNET: neural network; Sen: sensitivity; Spe: specificity; TP: true positive; FN: false negative; FP: false positive; TN: true negative.