Research Article

A Novel CGM Metric-Gradient and Combining Mean Sensor Glucose Enable to Improve the Prediction of Nocturnal Hypoglycemic Events in Patients with Diabetes

Table 1

The specificity and sensitivity of the prediction of nocturnal hypoglycemic events based on different metrics and algorithms (CGM).

pHMethodLRSVMRFLSTM
SPE (%)SEN (%)SPE (%)SEN (%)SPE (%)SEN (%)SPE (%)SEN (%)

15 minRaw data95.7695.3696.3196.0394.8294.7093.5192.05
MSG85.8990.0786.0690.0780.2190.0786.0690.07
Gradient52.0090.7354.5189.4049.0290.0751.3289.40
SD24.2491.3926.8389.4013.5389.4022.1791.39
CV69.7576.8289.4254.9740.8490.0739.9492.72
LAGE21.3791.3921.3791.3916.1590.7321.3791.39
MAG32.8784.7732.7884.7715.5890.7332.7884.77
LBGI89.1890.0789.0390.0786.0690.0789.2690.07
LI32.5784.7732.5784.7716.0689.4032.5784.77
MSG+gradient97.1298.0197.4098.0196.0796.0396.8897.35
MSG+SD93.6194.7093.8294.0492.4292.7294.1394.04
MSG+CV87.8190.0788.4390.0793.0293.3887.6190.73
MSG+LAGE94.2694.7094.6794.7093.0094.0494.1895.36
MSG+MAG93.8994.0494.9494.7093.4693.3893.3494.70
MSG+LBGI88.5390.0789.0390.0790.0990.7389.0390.07
MSG+LI95.2790.7394.0996.0393.4096.0394.3694.70

30 minRaw data83.7090.0785.4390.0783.9990.0785.5090.07
MSG75.9990.0776.1190.0761.5290.0776.1190.07
Gradient30.9790.7331.3890.0727.4089.4028.3290.07
SD21.4589.4023.2288.748.4888.7423.2288.74
CV26.9594.701.2990.7326.6690.7343.8486.75
LAGE20.8489.4020.8489.406.3090.7320.8489.40
MAG31.7582.1231.7682.1217.1790.0743.9169.54
LBGI82.9290.0783.1290.0781.3889.4083.3490.07
LI42.7070.2016.8492.0510.0888.7431.4982.12
MSG+gradient90.8390.0790.3090.7387.7990.0790.2090.07
MSG+SD87.9490.7388.6190.0783.1190.7388.5790.07
MSG+CV78.1190.0778.1190.0783.6890.0779.0790.07
MSG+LAGE87.3690.7388.4790.0781.1590.0789.2790.07
MSG+MAG86.0290.0788.1590.0779.7990.0787.5390.07
MSG+LBGI79.2690.7377.0090.0781.2490.0781.3490.07
MSG+LI87.9990.7388.4890.0778.9390.7379.5890.07

45 minRaw data75.5690.0778.8490.7380.2490.0780.7290.07
MSG65.6690.0765.4690.0754.5490.0765.1190.07
Gradient12.0590.7311.0991.3921.3490.0711.4390.73
SD20.5889.4022.4288.087.0390.0719.9189.40
CV75.7557.6210.8260.9326.5690.7353.5678.81
LAGE19.9589.4019.9489.407.7789.4019.9589.40
MAG30.9386.0915.7290.0712.9189.4015.7290.07
LBGI82.0182.7879.1587.4279.3585.4381.2982.78
LI42.6271.5230.6186.0916.0686.0930.5286.09
MSG+gradient82.4290.0781.1590.7379.7990.0782.8490.07
MSG+SD81.7991.3982.1490.0774.8490.0782.1990.07
MSG+CV65.8490.0766.9890.0773.3290.0767.0290.07
MSG+LAGE81.5590.7381.9590.7372.2791.3981.3290.73
MSG+MAG83.0190.0782.2390.0770.3490.7381.6890.07
MSG+LBGI64.3890.0765.6590.0754.8790.0765.4190.07
MSG+LI82.4890.0780.3990.7372.9590.0777.4390.07

60 minRaw data71.6890.0770.6590.7364.4990.7370.1990.07
MSG58.7390.0758.5690.0741.1690.0758.7390.07
Gradient11.6690.0711.3690.0713.7790.0714.9386.75
SD22.3988.7420.5290.737.9189.4030.9382.12
CV77.3559.608.0568.2130.4390.0740.4787.42
LAGE19.7390.7319.7390.7323.8786.0919.6590.73
MAG30.6284.1130.6384.1121.8387.4230.6484.11
LBGI81.4380.1382.3278.1579.4579.4780.7180.79
LI49.7567.5530.3384.1118.2986.0941.6973.51
MSG+gradient77.8790.7377.2590.0776.7990.0781.1090.07
MSG+SD74.9591.3974.2090.0767.3290.7374.5590.07
MSG+CV59.2890.7361.4690.0763.1590.0759.2590.07
MSG+LAGE76.7590.7375.9790.0762.3090.0776.4190.07
MSG+MAG77.7590.7378.8590.0769.7490.0776.8990.73
MSG+LBGI57.4690.0758.7190.0745.1490.0758.1090.07
MSG+LI76.5190.7376.6790.7370.8790.0778.9090.07

PH: prediction horizon; SPE: specificity; SEN: sensitivity; LR: logistic regression; SVM: support vector machine; RF: random forest; LSTM: long short-term memory; MSG: mean sensor glucose; SD: standard deviations of sensor glucose; CV: coefficient of variation; LAGE: largest amplitude of glycemic excursion; MAG: mean absolute glucose; LBGI: low blood glucose index; LI: lability index. The CGM length which was used for the prediction of nocturnal hypoglycemic events was 30 minutes in this table.