Research Article
A Metabolism-Based Interpretable Machine Learning Prediction Model for Diabetic Retinopathy Risk: A Cross-Sectional Study in Chinese Patients with Type 2 Diabetes
Table 1
Characteristics of patients with T2D according to DR status.
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Notes: data are mean (standard deviation), median (IQR), or (%). aAll subjects were analyzed for age, sex, duration of type 2 diabetes, body mass index, and body mass index categories. bType 2 diabetic patients with retinopathy. cType 2 diabetic patients without retinopathy. d values were derived from independent sample Student’s -test for normally distributed variables, Mann–Whitney test for skewed distributions, and Chi-square test (or Fisher’s test if appropriate) for categorical variables. was defined as statistically significant. Abbreviations: T2D: type 2 diabetes; DR: diabetic retinopathy. |