Research Article
Regularized Multiframe Super-Resolution Image Reconstruction Using Linear and Nonlinear Filters
Table 4
A numerical comparison of SSIM for various SR approaches.
| Image | LOR | L1-BTV | BEP | L2-BTV | MMW-BTV | MLRW-BTV |
| Acen | 0.81020 | 0.82641 | 0.85083 | 0.96882 | 0.96888 | 0.96913 | Cartap | 0.88417 | 0.85784 | 0.90570 | 0.97988 | 0.98220 | 0.98219 | Foreman | 0.88533 | 0.80184 | 0.85553 | 0.93580 | 0.93735 | 0.93650 | Text | 0.74471 | 0.77899 | 0.80922 | 0.96317 | 0.96593 | 0.96530 | Brain | 0.89743 | 0.86688 | 0.89533 | 0.93307 | 0.93347 | 0.93342 | License Plate | 0.81435 | 0.84267 | 0.86751 | 0.95510 | 0.95650 | 0.95640 | Natural Scene | 0.88567 | 0.87646 | 0.87795 | 0.94985 | 0.94987 | 0.94991 | Parrot | 0.91695 | 0.92255 | 0.92669 | 0.97674 | 0.97746 | 0.97731 | Average SSIM | 0.854851 | 0.846705 | 0.873595 | 0.957804 | 0.958958 | 0.95877 |
|
|
The bold numbers indicate the highest values of the proposed methods.
|