Research Article

Analysis of Machine Learning Techniques for Sentinel-2A Satellite Images

Table 9

Group 2 area and percentages of LULC for machine learning in Sentinel-2A satellite (2016).

No.NameMLCMaximum EntropyANNMDCSAMParallelepiped
Area, km2%Area, km2%Area, km2%Area, km2%Area, km2%Area, km2%

1High land417084002.27333024004.531936000.01229228001.57256558001.38153338000.82
2Land area75095450040.861010829000137.62148733770079.1339766320027.2572798470039.2629913020016.05
3Agricultural area27031230014.7126747000.36141220000.7536657690025.121383506007.4640611380021.80
4Built-up area40720450022.1572798660099.1237624040020.0248869280033.4928301530015.2641827570022.45
5Mountains36320100019.7638251000.5217951000.1044123810030.2440999210022.1173049600039.21
6Bare land463080002.5210107080013.7600.0016259490011.1429469010015.8992566000.50
Total1837980300100.00734486400100.001879688800100.001459102700100.001854032800100.001863272300100.00