Research Article

Multiscale Hjorth Descriptor on Epileptic EEG Classification

Table 1

Comparison with other studies.

AuthorMethodNumber of featuresScenariosAccuracy (%)

Orhan et al. [34]DWT, K-mean clustering56ZO-NF-S95.6
56ZONF-S99.6
18Z-F-S96.7

Bhattacharyya et al. [5]Tunable Q-factor wavelet transform, multiscale entropy16ZONF-S99
16ZO-NF-S98.6

Dhar et al. [33]Cross wavelet transform, PNN42ZO-NF-S98.2
Cross wavelet transform, SVM42ZO-NF-S94
Cross wavelet transform, LVQ42ZO-NF-S97.5

Nicolaou et al. [6]Permutation entropy, SVM1ZO-NF-S98.6
1ZONF-S86.1

Li et al. [4]Wavelet-based nonlinear analysis, SVM24ZO-NF-S99.3
24Z-F-S99.6
24ZONF-S99.4

Wijayanto et al. [35]Higuchi, Katz FD, SVM2ZO-NF-S96.6
2ZONF-S98.4
2Z-N-S98.7
2Z-F-S97.7
2O-N-S98.7
2O-F-S97.7

Yazid et al. [36]Local binary pattern transition histogram (LBPTH) and local binary pattern mean absolute deviation (LBPMAD), SVM, K-NN18ZONF-S99.74

Proposed methodMultiscale hjorth descriptor, SVM15ZO-NF-S97.6
15ZONF-S99
15Z-N-S97.3
15Z-F-S97.7
15O-N-S96.7
15O-F-S99.3