Research Article
Multiscale Hjorth Descriptor on Epileptic EEG Classification
Table 1
Comparison with other studies.
| Author | Method | Number of features | Scenarios | Accuracy (%) |
| Orhan et al. [34] | DWT, K-mean clustering | 56 | ZO-NF-S | 95.6 | 56 | ZONF-S | 99.6 | 18 | Z-F-S | 96.7 |
| Bhattacharyya et al. [5] | Tunable Q-factor wavelet transform, multiscale entropy | 16 | ZONF-S | 99 | 16 | ZO-NF-S | 98.6 |
| Dhar et al. [33] | Cross wavelet transform, PNN | 42 | ZO-NF-S | 98.2 | Cross wavelet transform, SVM | 42 | ZO-NF-S | 94 | Cross wavelet transform, LVQ | 42 | ZO-NF-S | 97.5 |
| Nicolaou et al. [6] | Permutation entropy, SVM | 1 | ZO-NF-S | 98.6 | 1 | ZONF-S | 86.1 |
| Li et al. [4] | Wavelet-based nonlinear analysis, SVM | 24 | ZO-NF-S | 99.3 | 24 | Z-F-S | 99.6 | 24 | ZONF-S | 99.4 |
| Wijayanto et al. [35] | Higuchi, Katz FD, SVM | 2 | ZO-NF-S | 96.6 | 2 | ZONF-S | 98.4 | 2 | Z-N-S | 98.7 | 2 | Z-F-S | 97.7 | 2 | O-N-S | 98.7 | 2 | O-F-S | 97.7 |
| Yazid et al. [36] | Local binary pattern transition histogram (LBPTH) and local binary pattern mean absolute deviation (LBPMAD), SVM, K-NN | 18 | ZONF-S | 99.74 |
| Proposed method | Multiscale hjorth descriptor, SVM | 15 | ZO-NF-S | 97.6 | 15 | ZONF-S | 99 | 15 | Z-N-S | 97.3 | 15 | Z-F-S | 97.7 | 15 | O-N-S | 96.7 | 15 | O-F-S | 99.3 |
|
|