Research Article

Detection of Low RCS Unmanned Air Systems Using K-Band Continuous Wave Doppler Radar

Table 2

Feature overview of UAS detection systems in literature.

#ReferenceRadarOperating frequencyOutput powerDetection rangeAdditional information

1Harmanny, R., J.J.M. De Wit, and G. Prémel Cabic. 2014. Radar Micro-Doppler Feature Extraction Using the Spectrogram and the Cepstrogram“A low power CW-radar”X-bandN/AN/A (not available)UASs used in the experimental measurements

2Harman, S. 2015.A Comparison of Staring Radars with Scanning Radars for UAV Detection: Introducing the AlarmTMStaring RadarFMCW staring radarG/C-band (4–6 GHz)100 WN/AAlarmTM staring radar
Harman, S.A., and A.L. Hume. 2015. Applications of Staring Surveillance Radars800 m (for quadcopter)

3Harman, S. 2016. Characteristics of the Radar Signature of Multirotor UAVsFMCWX-bandN/AN/AUAV detecting radar from QinetiQ

4Drozdowicz, J., M. Wielgo, P. Samczynski, K. Kulpa, J. Krzonkalla, M. Mordzonek, M. Bryl, and Z. Jakielaszek. 2016. 35 GHz FMCW Drone Detection SystemFMCW coherent radar35 GHz20 mW30–90 mUASs used in the experimental measurements
2 W

5Poitevin, P., M. Pelletier, and P. Lamontagne. 2017. Challenges in Detecting UAS with RadarRanger R6SS-U-3DX-band85 W1 km for 0.01 m2 RCS (micro-UAV) 1.8 km for 0.1 m2 RCS (mini-UAV) 5.5 km for 10 m2 RCS (large UAV, vehicle)The flir ranger R6SS-U-3D radar

6Shin, D.H., D.H. Jung, D.C. Kim, J.W. Ham, and S.O. Park. 2017. A Distributed FMCW Radar System Based on Fiber-Optic Links for Small Drone DetectionFiber-optic links based distributed FMCWK-band26.5 dBm500 mDescription of the measurement setup

7Nakamura, R., and H. Hadama. 2017. Characteristics of Ultra-Wideband Radar Echoes from a DroneUWB pulsed24 GHzAntenna gain 25 dBi3–7 mIndoor (laboratory) testing

8Ochodnický, J., M. Babjak, J. Kurty, and R. Max. 2017. Drone Detection by Ku-Band Battlefield RadarShort range pulse battlefield radarKu-band250 W1 to 2 kmUASs used in the experimental measurements

9Michael, J., Z. Lu, and V.C. Chen. 2017. Experimental Study on Radar Micro-Doppler Signatures of Unmanned Aerial VehiclesCW dual-receiving-channel radarK-band (24.125 GHz)16 dBmN/AThe experimental scenario was static in the sense that the drone was hovering at a very short distance away from the radar. (reported in Rahman, S., and D.A. Robertson 2018)

10Zhang, W., and G. Li. 2018.Detection of Multiple Micro-Drones via Cadence Velocity Diagram AnalysisSingle channel CW radar systemK-band (25 GHz)N/AN/AsUAS considered in the experiments

11Rahman, S., and D.A. Robertson. 2018. Radar Micro-Doppler Signatures of Drones and Birds at K-Band and W-BandFMCW radar evaluation board from analog devicesK-band (24 GHz)+25 dBm 24.5 dBi antenna gainMeasurements obtained at 85 m–700 m (estimated, for a single shot measurement)The report aimed to study micro-Doppler signatures of birds vs drones
T-220 (coherent FMCW radar)W-band (94 GHz)+18 dBm 40.5 dBi antenna gainMeasurements obtained at 85–120 m–380 m (estimated)
NIRAD(FMCW radar)+20 dBm 42.5 dBi antenna gain

12Present workCW Doppler radar(K-band) 24 GHz+21 dBm 21 dBi antenna gainUp to 150 mUAS used for tests: DJI Phantom 3 advanced