Research Article

Utilization of Stockwell Transform and Random Forest Algorithm for Efficient Detection and Classification of Power Quality Disturbances

Table 1

Summary of detection and classification of PQDs.

Sl. noAuthorsYearNumber of classesNumber of featuresFeature extraction techniqueClassification technique

1Khoa and Van Dai [18]202095Stockwell transform (ST)Decision tree (DT)
2Samanta et al. [19]2020912Stockwell transformWild goat optimization extreme learning machine (WGOELM)
3Chakravorti and Dash [20]20171536Extreme learning machine (ELM)Reduced kernel ELM (RKELM)
4Thirumala et al. [21]2019166Extended wavelet transform (EWT)Support vector machine (SVM)
5U. Singh and S. N. Singh [22]2017159Fractional Fourier transformDecision tree
6Mahela and Shaik [23]20171014Stockwell transform (ST)Fuzzy clustering method
7Li et al. [24]201699Double resolution S-transformDirected acyclic graph-SVM
8Sahani and Dash [25]2018164Hilbert–Huang transformWeighted bidirectional-ELM
9Manikandan et al. [26]201575Sparse signal decompositionHybrid dictionary
10Saini and Beniwal [27]2018127Fast Fourier transformExtreme learning machine
11Hole and Naik [28]2020610Discrete wavelet transformNaive Bayes
13Markovska et al. [29]2020219Discrete wavelet transformRandom forest
14Saxena et al. [30]202255Principal component analysisSupport vector machine