Research Article
Utilization of Stockwell Transform and Random Forest Algorithm for Efficient Detection and Classification of Power Quality Disturbances
| True PQDs | Predicted PQDs by KNN | C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | C9 | C10 | C11 | C12 | C13 | C14 | C15 | C16 | C17 |
| C1 | 353 | | | | | | | | | | | | | | | | | C2 | | 312 | | 12 | | 3 | | | | | 1 | | | | 11 | | | C3 | | | 368 | | | 60 | | | | | | | | | | 1 | | C4 | | 11 | | 307 | | 2 | | | | | 1 | | | | | | 9 | C5 | | | | | 291 | | | | 5 | | | 9 | | 30 | | | | C6 | | 1 | 1 | | 0 | 338 | | | | | | | | | 11 | 1 | | C7 | | | | | 14 | | 351 | | | 7 | | | 14 | | | | | C8 | | | | | | | | 332 | | 16 | | | | | 13 | | | C9 | | 3 | | 1 | | | | | 359 | | 15 | | | | | | | C10 | | | 6 | | | | 26 | | | 291 | | | | | | | | C11 | | 1 | | 1 | | | | | 10 | | 336 | 2 | | | | | | C12 | | | | | | | | 36 | | | | 292 | | | | | | C13 | | | | | | 1 | 5 | | | | | 12 | 342 | | | | | C14 | | | | | 11 | | | 11 | | | | | | 350 | | | | C15 | | 3 | | | 8 | | | | | 3 | 10 | | | | 304 | 9 | 9 | C16 | | | | | | | | | | 10 | | | | | | 345 | | C17 | | 5 | | 6 | | 6 | | | | | | | | | | | 340 | Overall accuracy = 93.41% |
|
|