Research Article
Heart Signal Analysis Using Multistage Classification Denoising Model
Table 2
Architecture of each layer used in the proposed multistage model.
| Layer | Learnable properties | Number of learnable |
| PCG input 1 × 2942 × 1 | — | 0 | Convolution-1 | Weight 1 × 33 × 1 × 8 | 272 | 32 filters 1 × 33, stride (1, 1) | Bias 1 × 1 × 8 | | Maxpooling: (2 × 2), stride Convolution-2 | Weight 1 × 21 × 8 × 4 | 676 | 16 filters 1 × 13, stride (1, 1) | Bias 1 × 1 × 14 | | Maxpooling: (2 × 2), stride (1, 1) | | | Convolution-3 | Weight 1 × 11 × 4 × 4 | 180 | 16 filters 1 × 13, stride (1, 1) | Bias 1 × 1 × 4 | | Maxpooling: (2 × 2), stride (1, 1) | | | Flatten | | 0 | LSTM layer (64 units) | Input (192 × 11768) | 2271936 | | Recurrent weight (192 × 64) | | | Bias 192 × 1 | | Fully connected layer (5 classes) | Weights 5 × 64 | 325 | | Bias 5 × 1 | |
|
|