Research Article

Heart Signal Analysis Using Multistage Classification Denoising Model

Table 2

Architecture of each layer used in the proposed multistage model.

LayerLearnable propertiesNumber of learnable

PCG input 1 × 2942 × 10
Convolution-1Weight 1 × 33 × 1 × 8272
32 filters 1 × 33, stride (1, 1)Bias 1 × 1 × 8
Maxpooling: (2 × 2), stride Convolution-2Weight 1 × 21 × 8 × 4676
16 filters 1 × 13, stride (1, 1)Bias 1 × 1 × 14
Maxpooling: (2 × 2), stride (1, 1)
Convolution-3Weight 1 × 11 × 4 × 4180
16 filters 1 × 13, stride (1, 1)Bias 1 × 1 × 4
Maxpooling: (2 × 2), stride (1, 1)
Flatten0
LSTM layer (64 units)Input (192 × 11768)2271936
Recurrent weight (192 × 64)
Bias 192 × 1
Fully connected layer (5 classes)Weights 5 × 64325
Bias 5 × 1