Research Article

Denoising Method for MRI Images Using Modified BM3D Filter with Complex Network and Artificial Neural Networks

Table 1

Summary of studies on denoise MRI image.

AuthorDenoise methodNoiseDatasetMetrics highest

Chang et al. 2019 [8]Bilateral filter & neural networkGaussLocal datasetsGauss 1%PSNR: 39.29
SSIM: 0.983

Tripathi et al. 2020 [9]CNNRicianLocal datasets and brainweb datasetRician 1%PSNR: 43.18
SSIM: 0.987

Moreno López et al. 2021 [10]Unsupervised learningStandard deviation of the noiseLocal datasets: 1172 MRI images and brainweb datasetStandard deviation of the noise σ = 50PSNR: 38.015
SSIM: 0.8977

Sreelakshmi et al. 2021 [11]Adaptive median filter and CNNGauss, sat and pepper, shrinkingLocal datasetsGauss 10%PSNR: 55.59
Gauss 50%PSNR: 48.68
Shrinking 10%PSNR: 68.85
SSIM: 0.989

Wang et al. 2022 [12]Nonlocal structural similarity and low-rank sparse representationRicianBrainweb 3D T1-weightedRician 4%PSNR: 38.503
SSIM: 0.976

Mehta et al. 2022 [13]U-NET architectureGauss253 MRI imagesGauss 25%PSNR: 30.96

Kollem et al. 2023 [14]Diffusivity functionNoise free image + poisson noiseBraTS2020PSNR: 42.78
SSIM: 0.99645