Research Article

Fast Partial Shading Detection on PV Modules for Precise Power Loss Ratio Estimation Using Digital Image Processing

Table 1

Summary of IRT methodology to detect PV module faults.

NoDetection output[Cit] yearAlgorithmInput dataDetection rate

1Detect modules and hot spots[23] 2015DIP filteringThermal infrared imagePrec: 97.9% and 97.4%
2Detect defective PV module[24] 2017DIP statistical and histogram analysisAerial thermal imageAcc: 97%
3Detect PV module[25] 2017DIPAerial thermal imagePrec: 82%
4Binary classification of defective and nondefective modules[26] 2018n-Bayes classifierThermal infrared imageAcc: 98.4%
5Detect modules and hot spots[27] 2018Geometric transformation and probabilistic analysisThermal infrared imagePrec: 96.52%
6Detect and localize hot spots[28] 2019Masking and thresholding in HSVThermal infrared imageAcc: 100% (only 3 images)
7Detect modules and hot spots[29] 2020DIP (Sobel and Canny operator) and CNNAerial thermal imagePrec: 90.91%
8PV panel faults classifications: healthy, delamination, and EVA discoloring[30] 2020Fuzzy rule-based classificationThermal infrared imageAcc: 94%
9Detect modules and hot spots[31] 2020Developed R-CNNAerial thermal imageAcc: 99% and 92.25%
10Binary classification of defective and nondefective modules[32] 2020DIP and SVMThermal infrared imageAcc: 97%