Research Article
[Retracted] Correlation Analysis between the Emotion and Aesthetics for Chinese Classical Garden Design Based on Deep Transfer Learning
Table 1
Performance of Transfer-Inception V3, Inception V3, and VGG in terms of accuracy.
| Iterations | Transfer-Inception V3 | Inception V3 | VGG |
| 1 | 0.6274 | 0.4678 | 0.3024 | 10 | 0.8345 | 0.8071 | 0.6328 | 20 | 0.8642 | 0.8075 | 0.7896 | 30 | 0.8971 | 0.8367 | 0.8444 | 40 | 0.9111 | 0.8487 | 0.8621 | 50 | 0.9261 | 0.8610 | 0.8569 | 60 | 0.9220 | 0.8887 | 0.8675 | 70 | 0.9421 | 0.8700 | 0.8721 | 80 | 0.9356 | 0.8804 | 0.9008 | 90 | 0.9567 | 0.8675 | 0.9141 | 100 | 0.9587 | 0.8976 | 0.9120 | 110 | 0.9614 | 0.9172 | 0.9170 | 120 | 0.9681 | 0.9150 | 0.9155 | 130 | 0.9682 | 0.9231 | 0.9289 | 140 | 0.9675 | 0.9247 | 0.9394 | 150 | 0.9876 | 0.9227 | 0.9321 | 160 | 0.9814 | 0.9234 | 0.9346 | 170 | 0.9811 | 0.9112 | 0.9345 | 180 | 0.9781 | 0.9243 | 0.9238 | 190 | 0.9872 | 0.9231 | 0.9452 | 200 | 0.9786 | 0.9231 | 0.9511 |
|
|