Research Article
Eco-Efficiency Measurement of Green Buildings and Its Spatial and Temporal Differences Based on a Three-Stage Superefficient SBM-DEA Model
Table 6
Final measurement results of eco-efficiency of green buildings in each city and province.
| Region | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | Average |
| Beijing | 0.973 | 1.021 | 0.839 | 0.923 | 0.856 | 1.076 | 0.944 | 1.068 | 0.963 | Tianjin | 0.379 | 0.522 | 0.532 | 0.576 | 0.584 | 0.757 | 0.874 | 0.919 | 0.643 | Heibei | 0.384 | 0.591 | 0.678 | 0.691 | 0.928 | 1.014 | 1.086 | 1.006 | 0.797 | Liaoning | 0.450 | 1.037 | 0.461 | 0.580 | 0.521 | 0.510 | 0.316 | 0.436 | 0.539 | Shanghai | 0.927 | 1.113 | 0.946 | 1.028 | 1.066 | 1.125 | 1.111 | 1.183 | 1.062 | Jiangsu | 1.572 | 1.131 | 1.336 | 1.000 | 1.601 | 1.419 | 1.341 | 1.566 | 1.371 | Zhejiang | 1.227 | 1.117 | 0.999 | 1.148 | 1.311 | 1.101 | 1.030 | 1.163 | 1.137 | Fujian | 0.420 | 0.572 | 0.660 | 0.484 | 0.614 | 0.662 | 0.734 | 0.812 | 0.620 | Shandong | 0.882 | 0.840 | 0.969 | 1.097 | 1.077 | 1.002 | 1.142 | 1.207 | 1.027 | Guangdong | 1.078 | 1.284 | 1.138 | 0.980 | 1.222 | 1.346 | 1.221 | 1.299 | 1.196 | Hainan | 0.362 | 0.381 | 0.453 | 0.488 | 0.558 | 0.537 | 0.585 | 0.569 | 0.492 | East | 0.787 | 0.874 | 0.819 | 0.818 | 0.940 | 0.959 | 0.944 | 1.021 | 0.895 | Shanxi | 0.338 | 0.358 | 0.574 | 0.601 | 0.427 | 0.638 | 0.701 | 0.835 | 0.559 | Jilin | 0.461 | 0.588 | 0.554 | 0.449 | 0.585 | 0.642 | 0.675 | 0.558 | 0.564 | Heilong jiang | 0.358 | 0.240 | 0.388 | 0.383 | 0.366 | 0.434 | 0.422 | 0.381 | 0.372 | Anhui | 0.428 | 0.535 | 0.471 | 0.457 | 0.613 | 0.576 | 0.581 | 0.699 | 0.545 | Jiangxi | 0.469 | 0.514 | 0.586 | 0.706 | 0.441 | 0.573 | 0.711 | 0.750 | 0.594 | Henan | 0.855 | 1.008 | 1.032 | 1.155 | 0.970 | 1.080 | 1.036 | 1.234 | 1.046 | Hubei | 0.525 | 0.902 | 0.878 | 1.043 | 0.929 | 1.140 | 1.270 | 0.948 | 0.954 | Hunan | 0.558 | 0.578 | 0.519 | 0.580 | 0.582 | 0.492 | 0.684 | 0.716 | 0.589 | Middle | 0.499 | 0.590 | 0.625 | 0.672 | 0.614 | 0.697 | 0.760 | 0.765 | 0.653 | Neimenggu | 0.352 | 0.318 | 0.362 | 0.409 | 0.360 | 0.377 | 0.354 | 0.390 | 0.365 | Guangxi | 0.363 | 0.416 | 0.543 | 0.635 | 0.522 | 0.565 | 0.567 | 0.588 | 0.525 | Chongqing | 0.470 | 0.557 | 0.689 | 0.883 | 1.010 | 1.081 | 1.077 | 0.961 | 0.841 | Sichuan | 0.342 | 0.654 | 0.540 | 0.635 | 0.724 | 0.655 | 0.772 | 0.792 | 0.639 | Guizhou | 0.231 | 0.400 | 0.478 | 0.588 | 0.573 | 0.575 | 0.554 | 0.783 | 0.523 | Yunnan | 0.352 | 0.482 | 0.521 | 0.496 | 0.599 | 0.544 | 0.568 | 0.543 | 0.513 | Shanxi | 0.572 | 0.769 | 0.791 | 0.962 | 1.284 | 1.186 | 1.237 | 1.214 | 1.002 | Gansu | 0.399 | 0.403 | 0.328 | 0.405 | 0.581 | 0.473 | 0.534 | 0.566 | 0.461 | Qinghai | 0.281 | 0.357 | 0.242 | 0.230 | 0.305 | 0.491 | 0.374 | 0.338 | 0.327 | Ningxia | 0.288 | 0.380 | 0.353 | 0.373 | 0.322 | 0.341 | 0.388 | 0.375 | 0.352 | Xinjiang | 0.270 | 0.382 | 0.336 | 0.414 | 0.391 | 0.481 | 0.438 | 0.427 | 0.392 | West | 0.356 | 0.465 | 0.471 | 0.548 | 0.606 | 0.615 | 0.624 | 0.634 | 0.540 | National | 0.552 | 0.648 | 0.640 | 0.680 | 0.731 | 0.763 | 0.778 | 0.811 | 0.701 |
|
|