Journal of Food Processing and Preservation
Publishing Collaboration
More info
Wiley Hindawi logo
 Journal metrics
See full report
Acceptance rate20%
Submission to final decision99 days
Acceptance to publication26 days
CiteScore3.400
Journal Citation Indicator0.520
Impact Factor2.5

Submit your research today

Journal of Food Processing and Preservation is now an open access journal, and articles will be immediately available to read and reuse upon publication.

Read our author guidelines

 Journal profile

Journal of Food Processing and Preservation aims to present readers with the latest research, knowledge, emerging technologies, and advances in food processing and preservation.

 Editor spotlight

Chief Editor Dr Charles Brennan is Professor of Food Science and dean of the School of Science at RMIT University. His research focuses on food science, sustainable food production and human nutrition.

 Special Issues

We currently have a number of Special Issues open for submission. Special Issues highlight emerging areas of research within a field, or provide a venue for a deeper investigation into an existing research area.

Latest Articles

More articles
Research Article

Influence of Sweeteners on the Phytochemical and Physicochemical Quality and Consumer Acceptability of Roselle Beverage

Bissap is prepared from Roselle calyxes (Hibiscus sabdariffa L.) by hot infusion and marketed as a health drink. To improve the tart attributes, sucrose is usually added. However, because of nutrition and health concerns, processors explore other types of sweeteners, but the impact on the phytochemical and physicochemical quality and sensory properties of Bissap is not reported despite the potential influence on consumer acceptability. In this study, Roselle calyx extract was prepared to which sugarloaf pineapple pulp, Roscoe ginger, Negro/Ethiopian pepper, and cloves were added to obtain the Bissap stock (control). Then, either sucrose, caramel, honey, or sucralose was added to the Bissap to achieve a comparable sweetness (13.1°Brix), and the effects were assessed during storage. The results showed that caramel and honey significantly increased the nonenzymatic browning of Bissap from to and , and the cloud value from to and , respectively. The use of honey increased the ascorbic acid from to  mg AE/mL, phenols from to  mg GAE/mL, flavonoid from to  mg QE/mL, and antioxidant capacity from to  mg GAE/mL. During storage, ascorbate content decreased, but at a rate lower for honey-Bissap than the other sweeteners whilst the flavonoid and antioxidant activity of honey- and caramel-Bissap improved. The physicochemical changes led to a shelf life of 10 days at 6°C storage. Sensory analysis revealed the highest consumer () acceptability scores for sucrose (), sucralose (), caramel (), honey (), and unsweetened Bissap (). Although honey enhanced the functional quality of Bissap, sucralose showed the highest potential as an alternative sweetener.

Research Article

Evaluation of Leaves, Flowers, and Seeds of Coriander (Coriandrum sativum L.) through Microwave Drying and Ultrasonic-Assisted Extraction, for Biologically Active Components

The coriander plant (Coriandrum sativum L.) is well known for its antibacterial and antioxidant properties since it contains a considerable number of bioactive compounds. This property encourages the use of coriander in food because it has many health benefits and preserves food longer. The current study’s objective was to demonstrate the extraction of coriander’s three fractions (leaves, flowers, and seeds) using microwave drying and ultrasonic assistance, in order to identify its distinct functional components. After microwave drying, the highest amounts of ash, fat, fiber, and protein with values , , , and , respectively, were observed in coriander seeds. Among macro- and microminerals analyzed, contents of Ca and Mg were found highest in coriander leaves, with values and  mg/100 g, respectively, whereas Fe, Zn, and Mn were found highest in seeds with values , , and  mg/100 g. Ultrasonic-assisted ethanolic extracts of microwave-dried coriander leaves presented significantly high () total phenolic contents ( mg gallic acid equivalent/100 g), total flavonoid contents ( mg quercetin equivalent/100 g), and total antioxidant activity ( mg trolox/100 g), followed by seeds, while flowers presented lowest values. Significantly high () antimicrobial activities were exhibited from extracts of coriander seeds, followed by leaves. It was concluded that leaves, flowers, and seeds of coriander all were rich source of nutritional components and bioactives, and microwave drying and ultrasonic-assisted extraction were proved useful techniques for maximum retention of these contents in powders and ethanolic extracts, respectively.

Review Article

An In-Depth Overview of the Structural Properties, Health Benefits, and Applications of Resistant Dextrin

With the escalating prevalence of diabetes and obesity, resistant dextrin, renowned for its prebiotic properties and blood glucose-lowering physiological activity, has garnered significant attention. Resistant dextrin, a low-calorie, indigestible water-soluble dietary fiber processed from starch, has high solubility, low molecular weight, and good thermal stability. The established method for its preparation involves a combination of acid heat treatment and enzymatic purification. Within the human body, resistant dextrin confers numerous health benefits. It promotes a balanced intestinal microbiome, regulates blood glucose and lipid metabolism, and enhances satiety. Additionally, it exerts positive influences on the intestinal environment, aids in weight management, and alleviates chronic conditions, particularly diabetes. In the food industry, resistant dextrin is widely employed as a functional food additive to enhance the nutritional value and health benefits of various food products. However, there is a need for greater clarity regarding the structural characteristics of resistant dextrin and the potential interplay between its structure and physiological activity. This paper comprehensively reviews the preparation methods, structural properties, health benefits, and application areas of resistant dextrin. Additionally, it anticipates future trends in its development. The primary objective of this review is to offer theoretical guidance and fresh perspectives for further research, the innovation of functional products, and the expanded utilization of resistant dextrin.

Research Article

Impact of Thermal, Ultrasonication, and Thermosonication Processes on the Quality Profile of Watermelon-Beetroot Juice Blend: A Comparative Study

Fruit juices are popular beverages that provide various health benefits due to their rich nutritional profile, but they are prone to microbial spoilage and quality deterioration. Thermal pasteurization is the conventional method to preserve fruit juices, but it causes undesirable changes in the physicochemical and nutritional value of the juices. Therefore, there is a need to develop alternative methods to ensure the microbial safety and quality of fruit juices. The aim of this study was to investigate the impact of thermal (95-100°C for 4 min), ultrasonication (US) (25 kHz for 5 and 10 min), and thermosonication (TS) (25 kHz at 40 and 50°C) processes on the quality profile of watermelon-beetroot juice blend, a novel juice formulation with enhanced nutritional and functional properties with 50 : 50 formulation. The samples were analysed for physicochemical (colour, pH, total soluble solids, and titratable acidity), bioactive (phenolic, flavonoid, antioxidant, and ascorbic acid contents), and microbiological (total plate count and yeast/molds) properties. The results showed that all the processed samples retained high total phenolic (756.33-842.33 μg GAE/g), total flavonoid (435.33-512.67 μg CE/g), and ascorbic acid (45.23-50.34 mg/100 mL) contents along with a high antioxidant potential (total antioxidant capacity (274.14-305.33 μg AAE/g) and DPPH radical scavenging activity (33.05-42.18%)) while preserving the normal physicochemical characteristics and decreasing the microbial counts of all the processed blend juices. In conclusion, the US treatment (10 min) produced the juice blends with the best quality. The findings of this research suggest that thermal, US, and TS processes are promising technologies for the preservation of fruit juices and that watermelon-beetroot juice blend is a novel juice formulation with high nutritional and functional value. The results of this research might be useful to the processed fruit juice industry and the consumers who are looking for healthy and safe fruit juices.

Research Article

Co-encapsulation of β-D-Galactosidase and Ascorbic Acid in the Milk Protein-Based Microcapsules: Optimization and Characterization

This research is aimed at preparing the β-galactosidase (βg) and vitamin C (VC) cocapsules stabilized by milk proteins. The effect of different independent parameters including core-coating ratio (10-100%), whey protein isolate (0 : 1), sodium caseinate (0 : 1), and ultrasound power (50-150 W) on physicochemical properties of microcapsules was investigated. The response surface methodology (RSM) defined the optimal conditions. Increasing the WPI values had different effects on the particle size and polydispersity index (PDI). The zeta potential values decreased by decreasing SC values. The βg had better encapsulation efficiency in comparison to VC. Increasing the core-coating ratio showed a negative effect on the enzyme activity. Among the test parameters, the core-coating ratio was effective on the viscosity of microcapsules. Two optimum conditions for co-encapsulation were determined as WPI, SC, core-coating ratio, and ultrasound power of 0, 1, 100%, and 79.4 W and 0.2, 0.8, 100%, and 75 W for microcapsules I and II, respectively. In the next step, the structural and morphological properties of the optimum samples were analyzed. The heterogeneous morphology of microcapsules was observed by SEM analysis. The formation of new interactions between wall materials, βg, and VC was confirmed by FT-IR analysis. XRD analysis revealed that the WPI-coated sample had a higher crystallinity index. Generally, the successful co-encapsulation of βg and VC exhibited the potential of the resultant microcapsules for the industrial production of VC fortified and lactose-free milk.

Review Article

Advancements in Food Printing Technologies and Their Potential Culinary Applications: A Contemporary Exploration

Food printing is a cutting-edge manufacturing technique that uses advanced printing methods such as binder jetting, extrusion-based printing, and inkjet printing to build an object layer by layer to achieve the required shape of food items such as chocolate and cheese. 3DFP (3-dimensional food printing) has the potential to combine delicate and easily degradable bioactive compounds and other functional elements into functional 3DFP food products, contributing greatly to the development of nutritious food. Many nations make different types of 3D food printers nowadays, creating specialty meals like space food, restaurants, elderly food, and floating food. Numerous benefits of 3DFP include the development of individualized food items with regard to taste and nutrition, the decentralisation of food production, the decrease of food waste, and commercial innovation. Based on the benefits of customizing current food to one’s taste and use, three-dimensional food printing technology can be applied to a variety of food categories. One of the reasons for the increase in research into this technology is the ability to produce modified products that are tailored to suit the taste preferences and specific nutritional demands of consumers. In this review, the industrial situation of 3DFP technology was examined along with recommendations for expanding the market for 3D-printed food in the new typical age.

Journal of Food Processing and Preservation
Publishing Collaboration
More info
Wiley Hindawi logo
 Journal metrics
See full report
Acceptance rate20%
Submission to final decision99 days
Acceptance to publication26 days
CiteScore3.400
Journal Citation Indicator0.520
Impact Factor2.5
 Submit Check your manuscript for errors before submitting

We have begun to integrate the 200+ Hindawi journals into Wiley’s journal portfolio. You can find out more about how this benefits our journal communities on our FAQ.