Research Article

Detection of Fungal Infections in Gloriosa Superba Plant Using the Convolution Neural Network Model

Table 2

PSO for CNN hyperparameters.

VariablesHPsRange

y1Number of first convolution kernels[1, 300]
y2First convolution layer kernel size{33, 55, 77, 99}
y3First convolution layer activation function{Sigmoid, ReLu, Tanh}
y4First pooling layer types{Max-pooling, min-pooling, average-pooling}
y5Number of second convolution kernels[1, 300]
y6The 2nd convolution layer kernel size{33, 55, 77, 99}
y7The 2nd convolution layer activation function{ReLu, Sigmoid, Tanh}
y8The 2nd pooling layer{max-pooling, min-pooling, average-pooling}
y9The first FC layer neuron[10, 800]
y10Activation function of the first FC layer{ReLu, Sigmoid, Tanh}
y11First FC layer dropout[0.1, 0.9]
y12Number of second FC layer neurons[10, 800]
y13The 2nd FC layer activation function{Sigmoid, ReLu, Tanh}
y14The 2nd FC layer dropout[0.1, 0.8]
y15Learning rate[0.01, 0.001, 1]