Research Article

Design and Evaluation of a Hybrid Technique for Detecting Sunflower Leaf Disease Using Deep Learning Approach

Algorithm 1

Technique for detecting sunflower leaf disease.
start:
(1)import numpy, sklearn, tensorflow, keras as np1, sk, tf, kr
(2)def convert_img_array(img):
If img not None:
Return array of img
else
Return np1.array[]
(3)for I in imgdir://…imgdir contains list of images
imgList[].append(convert_img_array(img))
labelList[].append(i.label)//…i.label gives label or class of each images
(4)modify labelList with label_binarizer library
(5)image_list = np1.array(imgList, dtype = np.float16)/225.0
(6)train_test_split(image_list, labelList, 0.2,3)
(7)do Augmentation with Keras.ImageDataGenerator()
(8)Implement Models:
from keras.applications.vgg16 import VGG16
from keras.applications.mobilenet import MobileNet
(9)models[].append(VGG16() & MobileNet)
(10)for i in range models:
Models[i].fit_transform();//to train the models
(11)Now combine prediction values;
For i in range models:
Yhat = models[i].prediction(); //stacked data set
(12)Now create stacked model
stackedx = call process 11
Model = LogisticRegression();
13Now to train the stacked model:
Model.fit(stackedx, test_x);
(14)Now store prediction value of stacked model:
Yhat = Model.predict(stackedx)
(15)Now calculate accuracy:
Sklearn.accuracy_score(yhat, test_y)
end;