Research Article
Rapid and Nondestructive Identification of Origin and Index Component Contents of Tiegun Yam Based on Hyperspectral Imaging and Chemometric Method
Table 3
Pairwise combination classification accuracy of the preprocessing method and classification model of Tiegun yam powder samples from different origins.
| Models | Preprocessing | Accuracy (%) | Training set | Prediction set |
| PLS-DA | Raw data | 99.57 | 96.00 | MSC | 100.00 | 98.40 | D1 | 100.00 | 96.00 | D2 | 97.82 | 95.42 | SG | 98.72 | 95.20 | SNV | 99.15 | 96.80 |
| SVM | Raw data | 98.81 | 61.11 | MSC | 97.22 | 61.11 | D1 | 98.81 | 25.93 | D2 | 34.52 | 27.78 | SG | 98.41 | 59.26 | SNV | 100.00 | 24.07 |
| RF | Raw data | 97.14 | 68.89 | MSC | 99.05 | 76.67 | D1 | 99.05 | 52.22 | D2 | 100.00 | 83.33 | SG | 98.09 | 77.78 | SNV | 97.14 | 68.89 |
|
|