Research Article
CNFA: ConvNeXt Fusion Attention Module for Age Recognition of the Tangerine Peel
Table 4
Results of model comparison experiments.
| Network | Param (M) | FLOPS (G) | Accuracy (%) | Precision (%) | Recall (%) | F1 (%) | Time (s) |
| CNN | 25.4 | 4.217 | 82.59 | 82.60 | 81.65 | 82.12 | 104.23 | ResNet50 | 25.6 | 4.158 | 95.98 | 94.65 | 94.92 | 94.69 | 93.69 | ResNet50-SE | 28.1 | 4.162 | 96.23 | 95.40 | 95.46 | 95.42 | 92.02 | ResNet50-CBAM | 28.1 | 4.168 | 96.27 | 95.53 | 95.12 | 95.32 | 90.97 | ReNet50-csRSE | 28.1 | 4.175 | 96.67 | 96.67 | 95.66 | 96.16 | 90.85 | BiFormer | 25.5 | 4.5 | 96.38 | 96.07 | 95.91 | 95.99 | 98.52 | ConvNeXt | 28.6 | 4.546 | 96.70 | 96.18 | 96.09 | 96.13 | 91.67 | CNFA-integrated (ours) | 30.1 | 4.551 | 97.17 | 96.71 | 96.86 | 96.78 | 91.02 |
|
|
Bold indicates the best performance.
|