Research Article

Fixed Points of Monotone Total Asymptotically Nonexpansive Mapping in Hyperbolic Space via New Algorithm

Table 1

The convergence behavior of Mann, Ishikawa, Agarwal, and Noor iterations with new iteration for the parameters , with the initial values and 10-6.

StepsMannIshikawaAgarwalNoorNew

0(0, 3)(0, 3)(0, 3)(0, 3)(0, 3)
1(0, 2.244506)(0, 2.013105)(0, 1.509443)(0, 1.916515)(0, 0.311990)
2(0, 1.519333)(0, 1.196547)(0, 0.479098)(0, 1.097796)(0, 0.011353)
3(0, 0.949002)(0, 0.663545)(0, 0.116180)(0, 0.594503)(0, 0.000384)
4(0, 0.561764)(0, 0.355178)(0, 0.025817)(0, 0.313100)(0, 0.000012)
5(0, 0.321995)(0, 0.186769)(0, 0.005616)(0, 0.162620)(0, 0.000000)
6(0, 0.181202)(0, 0.097333)(0, 0.001216)(0, 0.083873)(0, 0.000000)
7(0, 0.100930)(0, 0.050492)(0, 0.000263)(0, 0.043105)(0, 0.000000)
8(0, 0.055900)(0, 0.026132)(0, 0.000056)(0, 0.022113)(0, 0.000000)
9(0, 0.030863)(0, 0.013508)(0, 0.000012)(0, 0.011333)(0, 0.000000)
10(0, 0.017010)(0, 0.006978)(0, 0.000002)(0, 0.005806)(0, 0.000000)
11(0, 0.009366)(0, 0.003603)(0, 0.000000)(0, 0.002973)(0, 0.000000)
12(0, 0.005155)(0, 0.001860)(0, 0.000000)(0, 0.001522)(0, 0.000000)
13(0, 0.002836)(0, 0.000960)(0, 0.000000)(0, 0.000779)(0, 0.000000)
14(0, 0.001560)(0, 0.000495)(0, 0.000000)(0, 0.000399)(0, 0.000000)
15(0, 0.000858)(0, 0.000256)(0, 0.000000)(0, 0.000204)(0, 0.000000)
16(0, 0.000472)(0, 0.000132)(0, 0.000000)(0, 0.000104)(0, 0.000000)
17(0, 0.000259)(0, 0.000068)(0, 0.000000)(0, 0.000053)(0, 0.000000)
18(0, 0.000142)(0, 0.000035)(0, 0.000000)(0, 0.000027)(0, 0.000000)
19(0, 0.000078)(0, 0.000018)(0, 0.000000)(0, 0.000014)(0, 0.000000)
20(0, 0.000043)(0, 0.000009)(0, 0.000000)(0, 0.000007)(0, 0.000000)
21(0, 0.000023)(0, 0.000004)(0, 0.000000)(0, 0.000003)(0, 0.000000)
22(0, 0.000013)(0, 0.000002)(0, 0.000000)(0, 0.000001)(0, 0.000000)
23(0, 0.000007)(0, 0.000001)(0, 0.000000)(0, 0.000000)(0, 0.000000)
24(0, 0.000003)(0, 0.000000)(0, 0.000000)(0, 0.000000)(0, 0.000000)
25(0, 0.000002)(0, 0.000000)(0, 0.000000)(0, 0.000000)(0, 0.000000)
26(0, 0.000001)(0, 0.000000)(0, 0.000000)(0, 0.000000)(0, 0.000000)
27(0, 0.000000)(0, 0.000000)(0, 0.000000)(0, 0.000000)(0, 0.000000)