Research Article
Classification of Computed Tomography Images in Different Slice Positions Using Deep Learning
Table 3
Accuracy and loss of validation for training models.
| ā | CNN architecture | Dataset | 0.1K | 0.5K | 1K | 2K | 3K | 4K | 5K | 6K | 7K | 8K | 9K | 10K |
| Accuracy of validation | AlexNet | 0.27 | 0.77 | 0.87 | 0.92 | 0.93 | 0.95 | 0.95 | 0.96 | 0.97 | 0.97 | 0.97 | 0.97 | GoogLeNet | 0.40 | 0.78 | 0.93 | 0.96 | 0.96 | 0.97 | 0.98 | 0.97 | 0.97 | 0.98 | 0.98 | 0.98 |
| Loss of validation | AlexNet | 2.00 | 0.57 | 0.36 | 0.21 | 0.21 | 0.15 | 0.14 | 0.12 | 0.11 | 0.11 | 0.10 | 0.09 | GoogLeNet | 1.59 | 0.55 | 0.24 | 0.12 | 0.12 | 0.10 | 0.09 | 0.10 | 0.09 | 0.08 | 0.08 | 0.07 |
| Time for training (min) | AlexNet | 0.8 | 2.1 | 3.8 | 7.3 | 10.7 | 14.2 | 17.4 | 21.3 | 24.7 | 27.9 | 31.8 | 34.8 | GoogLeNet | 1.1 | 4.9 | 9.5 | 18.7 | 28.9 | 38.5 | 48.3 | 45.7 | 67.6 | 76.5 | 86.4 | 95.0 |
|
|