Research Article
Classification of Computed Tomography Images in Different Slice Positions Using Deep Learning
Table 5
Recall, precision, F-measure, and overall accuracy for each dataset in AlexNet and GoogLeNet.
| ā | CNN architecture | Dataset | 0.1K | 0.5K | 1K | 2K | 3K | 4K | 5K | 6K | 7K | 8K | 9K | 10K |
| Recall | AlexNet | 0.20 | 0.39 | 0.52 | 0.53 | 0.61 | 0.67 | 0.61 | 0.67 | 0.67 | 0.65 | 0.64 | 0.62 | GoogLeNet | 0.15 | 0.38 | 0.57 | 0.62 | 0.65 | 0.68 | 0.61 | 0.65 | 0.69 | 0.62 | 0.67 | 0.69 |
| Precision | AlexNet | 0.20 | 0.39 | 0.53 | 0.54 | 0.61 | 0.67 | 0.65 | 0.69 | 0.70 | 0.68 | 0.67 | 0.64 | GoogLeNet | 0.15 | 0.41 | 0.58 | 0.62 | 0.65 | 0.68 | 0.63 | 0.66 | 0.71 | 0.64 | 0.70 | 0.70 |
| F-measure | AlexNet | 0.14 | 0.35 | 0.49 | 0.50 | 0.60 | 0.65 | 0.59 | 0.65 | 0.66 | 0.63 | 0.62 | 0.59 | GoogLeNet | 0.11 | 0.35 | 0.54 | 0.61 | 0.64 | 0.67 | 0.59 | 0.63 | 0.67 | 0.60 | 0.65 | 0.68 |
| Overall accuracy | AlexNet | 0.20 | 0.39 | 0.52 | 0.53 | 0.61 | 0.66 | 0.61 | 0.67 | 0.67 | 0.65 | 0.63 | 0.62 | GoogLeNet | 0.15 | 0.38 | 0.57 | 0.62 | 0.65 | 0.68 | 0.61 | 0.65 | 0.69 | 0.62 | 0.67 | 0.69 |
|
|