Research Article
Improvement of Adequate Digoxin Dosage: An Application of Machine Learning Approach
Table 3
Parameter settings in WEKA.
| Method | Parameters | Value/Range | Best parameter setting |
| J48 | Confidence factor | 0.1–0.5 | 0.25 | Minimum number of instances per leaf | 2–50 | 2 | IBk | Number of neighbors | 2–10 | 2 | SimpleCART | Minimum number of instances per leaf | 2–50 | 2 | RandomForest | Number of trees | 5–10 | 10 | Number of attributes to be used in random selection | 2–8 | 4 | Multilayer perceptron | Number of hidden nodes | 3–14 | 7 | Learning rate | 0.1–0.6 | 0.3 | Momentum factor | 0–0.9 | 0.2 | Maximum number of epochs | 300–1000 | 500 | AdaBoostM1 | Number of iterations | 10 | 10 | Weight threshold for pruning | 100 | 100 |
|
|