|
CNN parameters | Volume |
|
1st convolutional layer kernel size | 1 × 3 × 32 |
2nd convolutional layer kernel size | 1 × 3 × 32 |
1st max-pooling layer kernel size | 1 × 3 × 32 |
1st batch normalization layer | — |
1st dropout layer rate | 0.25 |
3rd convolutional layer kernel size | 1 × 3 × 32 |
4th convolutional layer kernel size | 1 × 3 × 32 |
2nd max-pooling layer kernel size | 1 × 3 × 32 |
2nd batch normalization layer | — |
2nd dropout layer rate | 0.25 |
5th convolutional layer kernel size | 1 × 3 × 64 |
6th convolutional layer kernel size | 1 × 3 × 64 |
3rd max-pooling layer kernel size | 1 × 3 × 64 |
3rd batch normalization layer | — |
3rd dropout layer rate | 0.25 |
7th convolutional layer kernel size | 1 × 3 × 64 |
8th convolutional layer kernel size | 1 × 3 × 64 |
4th max-pooling layer kernel size | 1 × 3 × 64 |
4th batch normalization layer | — |
4th dropout layer rate | 0.25 |
9th convolutional layer kernel size | 1 × 3 × 128 |
10th convolutional layer kernel size | 1 × 3 × 128 |
5th max-pooling layer kernel size | 1 × 3 × 128 |
5th batch normalization layer | — |
5th dropout layer rate | 0.25 |
Global average pooling layer | — |
6th dropout layer rate | 0.25 |
The number of neurons in the fully connected layer | 128 |
7th dropout layer rate | 0.25 |
The number of neurons in the softmax layer | 2 |
|