Research Article

SS-SWT and SI-CNN: An Atrial Fibrillation Detection Framework for Time-Frequency ECG Signal

Table 1

The detailed architecture of the proposed SI-CNN.

CNN parametersVolume

1st convolutional layer kernel size1 × 3 × 32
2nd convolutional layer kernel size1 × 3 × 32
1st max-pooling layer kernel size1 × 3 × 32
1st batch normalization layer
1st dropout layer rate0.25
3rd convolutional layer kernel size1 × 3 × 32
4th convolutional layer kernel size1 × 3 × 32
2nd max-pooling layer kernel size1 × 3 × 32
2nd batch normalization layer
2nd dropout layer rate0.25
5th convolutional layer kernel size1 × 3 × 64
6th convolutional layer kernel size1 × 3 × 64
3rd max-pooling layer kernel size1 × 3 × 64
3rd batch normalization layer
3rd dropout layer rate0.25
7th convolutional layer kernel size1 × 3 × 64
8th convolutional layer kernel size1 × 3 × 64
4th max-pooling layer kernel size1 × 3 × 64
4th batch normalization layer
4th dropout layer rate0.25
9th convolutional layer kernel size1 × 3 × 128
10th convolutional layer kernel size1 × 3 × 128
5th max-pooling layer kernel size1 × 3 × 128
5th batch normalization layer
5th dropout layer rate0.25
Global average pooling layer
6th dropout layer rate0.25
The number of neurons in the fully connected layer128
7th dropout layer rate0.25
The number of neurons in the softmax layer2