Research Article

The Ensemble Machine Learning-Based Classification of Motor Imagery Tasks in Brain-Computer Interface

Table 1

Summary of the classification performance measures.

Subj.ClassifierAccuracyF-measureAUC

AA RSMRoFRSMRoFRSMRoF
SVM89.6490.600.8960.9060.9580.929
k-NN93.4596.670.9350.9670.9880.985
RF82.0284.760.8200.8480.9000.928
C4.567.5074.760.6750.7480.7640.834
REP tree69.8867.500.6990.6750.7650.746
RT70.8374.290.7060.7420.7990.827

ALSVM86.4384.880.8640.8490.9230.879
k-NN92.2694.050.9230.9400.9700.968
RF75.0077.260.7500.7730.8300.852
C4.571.0773.690.7110.7370.7860.812
REP tree68.9368.690.6890.6870.7510.756
RT70.9570.600.7080.7030.7780.786

AVSVM87.0284.400.8700.8440.9280.886
k-NN88.9389.640.8890.8960.9550.939
RF73.6976.900.7370.7690.8180.857
C4.561.9071.310.6190.7130.6770.767
REP tree62.3866.190.6240.6620.6710.721
RT65.0065.950.6440.6540.6910.738

AWSVM86.9085.000.8690.8500.9260.876
k-NN94.6496.430.9460.9640.9830.976
RF77.0278.810.7700.7880.8440.867
C4.567.6271.190.6760.7120.7270.788
REP tree63.4568.330.6340.6830.6830.742
RT68.6970.240.6850.7000.7350.780

AYSVM92.0291.900.9200.9190.9840.942
k-NN92.3890.710.9240.9070.9770.952
RF98.6994.290.9870.9430.9990.991
C4.598.4597.140.9850.9710.9990.995
REP tree95.6093.100.9560.9310.9880.980
RT97.0293.100.9700.9310.9960.985

ALLSVM89.9890.120.9000.9010.9620.932
k-NN93.5594.830.9350.9480.9840.974
RF80.3681.830.8040.8180.8890.901
C4.568.5773.000.6860.7300.7690.815
REP tree68.6069.020.6860.6900.7650.760
RT72.5772.400.7240.7220.8070.809