Research Article

The Ensemble Machine Learning-Based Classification of Motor Imagery Tasks in Brain-Computer Interface

Table 2

Comparison with previous studies.

StudyFeature extractionClassifierClasses/subject(s)Accuracy (%)

[18]Rényi min-entropyRF4/subject independent80.55
[21]Subbands PSDsDNN2/subject independent82.48
[37]Tangent space mappingSVM2/1-subject97.80
[38]Common spatial patternBackpropagation
Neural network
2/subject independent80.73
[39]Regularized common spatial patternSVM2/subject independent91.9
[40]Fisher ratio of time domain parametersSVM2/subject independent89.13
[41]Common spatial patternSVM2/subject independent85.01
[42]Stacked autoencoders (SAE)CNN2/subject independent82.00
[43]Inverse problem through beamformingCNN2/subject independent90.50
[44]Granger causality channel selection and common spatial patternLinear SVM2/subject independent88.46
ProposedWPDRF and RSM2/subject dependent98.69
WPDk-NN and RoF2/subject independent94.83